
LLMs for code (4)
Marc LELARGE

INRIA-ENS
Paris

Co-teacher: Nathanaël FIJALKOW

Token-level generation

Make observed data likely under the model: maximum likelihood

Now, how to generate tokens with our model?

Decoding as optimization

Maximum a posteriori (MAP) decoding: given a prompt x, solve:

This is a search problem
with a large branching factor
-> too hard to solve exactly…

Greedy decoding

Beam search

Ex with beam of size 2

Beam search in code

https://github.com/facebookresearch/fairseq/blob/main/fairseq/search.py

Problems with beam search

Decoding as sampling

Ancestral sampling:

Decoding as sampling

Low-probability tokens are too likely: the distribution has a heavy tail.

Truncation sampling
Truncation sampling interpolates greedy and ancestral sampling
by choosing a minimum probability threshold at each time step.

● Top-k: sample from k-most probable
● Top-p: Cumulative probability at most p (nucleus sampling)

Truncation sampling

Truncation sampling

Truncation sampling

Truncation sampling

Temperature scaling

Temperature scaling

nanogpt: temperature scaling with top-k

Diverse Beam Search

Divide beam into groups and ensure diversity between groups

Diverse Beam Search

Unlikelihood training

Contrastive training

Contrastive search

When generating output, contrastive search jointly considers (i) the probability
predicted by the language model to maintain the semantic coherence between the
generated text and the prefix text; and (ii) the similarity with respect to the previous
context to avoid model degeneration.

Contrastive Framework for Neural Text Generation

Contrastive Framework for Neural Text Generation

