Large Language Models:
Transformers from scratch

Nathanaél Fijalkow
CNRS, LaBRI, Bordeaux

universite
C' “BORDEAUX

SOME REFERENCES

- Build a Large Language Model by Sebastian Raschka
- minGPT / nanoGPT (and videos) by Andrej Karpathy
- Understanding Deep Learning by Simon Price

BUILD A

https://www.manning.com/books/build-a-large-language-model-from-scratch
https://github.com/karpathy/minGPT
https://github.com/karpathy/nanoGPT
https://udlbook.github.io/udlbook/

Most illustrations in these slides are from the “Build a
Large Language Model” book, copyright Sebastian Raschka 2024

Other sources are mentioned when used

[ANGUAGE MODELS

WHAT IS A LANGUAGE MODEL (IM)?

Input: a sentence (as a sequence of tokens)

Output: predict the next token

Basic examples:

e Markov chain is a LM, it gives a probabilistic
distribution over the next token given the last token

e Naturally extended to n-grams: use the (n-1) last tokens
to predict the next one

TOKENTZATION

[OKENTZATION :

DECOMPOSING A SENTENCE INTO A SEQUENCE OF TOKENS

Hello how are U tday?

Normalization
hello how are u tday?

Pre-tokenization
[hello, how, are, u, tday, ?]
Model
[hello, how, are, u, td, ##ay, ?]
Postprocessor

[CLS, hello, how, are, u, td, ##ay, ?, SEP]

Every single explanation you will ever see about Language
Models use words, BUT in reality the unit object is tokens

ORD = 10KE

WHAT 1T ACTUALLY LOOKS LIKE:

test = "hello world"
test encoded = tokenizer.encode(test)
test encoded, [tokenizer.decode([x]) for x in test encoded], tokenizer.decode(test encoded)

([258,:285; 1311; 4921, ["he®*; *11%; Yo', ""wortd']l; ‘hello worid")

TOKENTZATION 15 TMPORTANT, WE'LL TALK ABOUT IT LATER!

Bottom line: at this point, we have converted a text
into a sequence of integers (which represent tokens).

GPT-2 has 50,257 tokens

EMBEDDINGS AND THE

MULTI-LAYER
PERCEPTRON

THE 2003 (SILENT) BREAKTHROUGH

Journal of Machine Learning Research 3 (2003) 1137-1155 Submitted 4/02; Published 2/03

A Neural Probabilistic Language Model

Yoshua Bengio BENGIOY @IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME @IRO.UMONTREAL.CA
Pascal Vincent VINCENTP @IRO.UMONTREAL.CA
Christian Jauvin JAUVINC @IRO.UMONTREAL.CA

Département d’Informatique et Recherche Opérationnelle
Centre de Recherche Mathématiques

Université de Montréal, Montréal, Québec, Canada

KEY IDEA: EMBEDDINGS

Vector embeddings of

different types of birds
Vector embedding of
t the word squirrel
@® squirrel
Second :
dimension | Germany gerlm longer
PY long . @
° ® ~ @ [ongest
@
England London
First dimension

NN .EMBEDDING

import torch
import torch.nn as nn

3
4

n_token
n_embed

embedding = torch.nn.Embedding(n_token, n_embed)
print("weights of the embedding:\n", embedding.weight)
print("Result of embedding token number 1:\n", embedding(torch.tensor([1])))

Weights of the embedding:

Parameter containing:

tensor([[-0.9252, 0.8805, -0.0214, 0.9724],
[©.1136, ©0.2035, 1.1415, 0.0875],

[0.4177, ©.6348, 0.6271, ©.1938]], requires grad=True)
Result of embedding token number 1:

tensor([[0.1136, 0.2035, 1.1415, 0.0875]], grad fn=<EmbeddingBackwardo>)

Advanced question: what is the difference
between nn.embedding and nn.linear?

WHAT 15 THE DIFFERENCE BETWEEN NN _EMBEDDING AND NN . LINEAR!

Both nn.Embedding and nn.Linear are modules in PyTorch that deal with transforming inputs, but they serve different purposes and operate differently:

nn.Embedding

° Purpose: This module is used to represent categorical data, such as words in a vocabulary. It creates a lookup table where each unique category
(e.g., word) is assigned a unique vector (embedding).
° Operation: It works by looking up the embedding vector corresponding to the given input index. It's essentially a dictionary that maps indices to

vectors.

nn.Linear

° Purpose: This module performs a linear transformation on the input data. It applies a weight matrix and a bias vector to the input.
° Operation: It calculates the dot product of the input with the weight matrix and adds the bias vector. This is a fundamental operation in many neural

networks.

In Summary:

° Use nn.Embedding for representing categorical data as dense vectors.

° Use nn.Linear for performing linear transformations in neural networks.

FROM TEXT T0 VECTORS

Weight matrix of the
embedding layer — >

[0.3374 -0.1778
0.9178 1.5810

- 0.1690 |
1.3010

Token IDs to embed

Input text \

fox 2

jumps 3

over 5

dog il
Embedded token IDs /

(1.2753 -0.2010 - 0.1606

- 0.4015 0.9666
-1.1589 0.3255

- 1.1481
- 0.6315

(-2.8400 -0.7849 - 1.4096}

Embedding vector of

the first token ID

¢

{1.2753 -0.2010 - 0.1606]

- 04015 0.9666

- 1.1481

(-2.8400 -0.7849 - 1.4096

0.9178 1.5810

1.3010

2 fox
g jumps
1

over
dog

Embedding vector of
the third token ID

Bottom line: at this point, we have converted a text into a
sequence of (floating point) vectors. These are (almost) the
inputs for our models.

(We will discuss later positional embeddings.)
/ _ J
K Inputembeddings: []] O]] l\

/
Positionalembeddings: [[| | LI T J [T 111 LT
+
Tokenembeddings: [I] L L 1L J I 11 I I
Token IDs: [40134| [2052 | [133 | [389 | | 12 |
Tokenized text: [This| | is | | an | [example] [:]

\ Input text: | This is an example. | J

STATISTICS

The smallest GPT-2 models (117M and 125M parameters) use an
embedding size of 768 dimensions.

The largest GPT-3 model (175B parameters) uses an embedding
size of 12,288 dimensions.

MULTI-LAYER PERCEPTRON (MLP)

class MLP(nn.Module):
def init (self, context length, n_embed, n_hidden):
super(). init ()
self.token embedding table = nn.Embedding(n token, n_embed)
self.net = nn.Sequential(
nn.Linear(context length * n_embed, n hidden),
nn.Tanh(),
nn.Linear(n_hidden, n_token)

TWO ISSUES WITH MLPS

- Long contexts require huge amount of compute
- Struggle with long-range dependencies

German input sentence to translate

I

(can) yu JC me J(hep) this)(sentence)(to)(translate)

\ The word-by-word translation results
in a grammatically incorrect sentence

D SIS SIS G 2T GETID G D

o =

(Can J[you)(help)(me J(to)L translate JL this J(sentence J

The correct translation

Certain words in the generated translation
require access to words that appear earlier
or later in the original sentence.

[HE ATTENTION
MECHANISM

Attention Is All You Need

Ashish Vaswani* Noam Shazeer” Niki Parmar™ Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones™ Aidan N. Gomez* | F.ukasz Kaiser™
Google Research University of Toronto Google Brain
llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

ATTENTION IS ALL YOU NEED

The paper came in 2017, in a wave of more and more
complicated architectures around recurrent neural networks
(RNNs), aiming at dealing with long contexts.

It does not do anything radically new: it says that
“attention mechanism 1is enough to enable long contexts”.

ASIDE-NOTE

OpenAl scientist Noam Brown:

Recently, older architectures (made parallelizable) reached
similar performances as Transformers..

A SELF-ATTENTION HEAD

Input: an embedding vector x(i) for each token 1

Output: a context vector z(i) for each token i

Intuition: z(i) gathers contextual information

COMPUTING CONTEXT VECTORS

Computing context vectors is very easy assuming we have
computed attention weights: alpha(i,j) describes the
importance of token j for token 1.

Input vector
(token embedding) (1)
corresponding to X

the first token ~ [0 4ll0.1ll08] lo5

Attention weightto o1
weigh the importance
of input xM

The context vector z(z) is

computed as a combination of /%/‘

all input vectors weighted with
respect to input element X2

“Your” “journey” “starts”
ey ME
0.8/(0.6| |0.5(/0.8|(0.6
22 23

0.4](0.6(/0.5
7(2)

“Step”

()

0.0

0.8

0.5

JUST A MATRTX MULTIPLICATION...

context length = 3
embed dim = 2

x = torch.randn(context length, embed dim)
attention weights = torch.randn(context length, context length) # We'll discuss later how to compute them

context vectors = attention weights @ x

COMPUTING ATTENTION SCORES AND WEIGHTS

Now we focus on the core computation: attention scores and
weights.

We first compute attention scores, and then normalise them
into attention weights.

KEYS, QUERTES, AND VALUES

Input: an embedding vector x(i) for each token 1

Output: for each token 1:

- A guery vector q(i), describing the information token 1
is interested 1in,

- A key vector k(i), whose goal is to match the relevant
queries for token 1,

- A value vector v(i), describing the information contained
by token 1.

INFORMATION -RETRIEVAL INTUITION

Think of a database, it holds (keys, values), and it can be
accessed through queries.

Here, keys, queries, and values are vectors. To match a
query with a key we simply do a dot-product.

So: the attention score alpha(i,j) is defined as the
dot-product between g(i) and k(3j)

KEYS, QUERTES, AND VALUES ARE COMPUTED BY MATRIX MULTIPLICATIONS

“journey” -
We introduce three matrices with +@
trainable parameters:

0.5(/0.8{0.6
- Wqg for query,
- Wk for key, Wq Wkl w\,
- Wv for value.

041(14 0.4((1.1 0.3/(1.0

g? @ 2

FROM ATTENTION SCORES TO ATTENTION WEIGHTS

Attention scores are computed by a single matrix
multiplication:

query @ key.T

Now, how do we normalise scores into weights?

SOFTMAX TS VECTOR NORMALISATION

context length = 5

attention scores = torch.randn(context length)

print("The attention scores: \n", attention scores)

scores exped = attention scores.exp()

print("After exponentiation: \n", scores exped)

probs = scores exped / scores exped.sum()

print("After normalisation: \n", probs)

print("\nThe two steps above are called softmax: \n", torch.softmax(attention scores, -1))

The attention scores:

tensor([1.4529, 0.3491, -0.8928, 0.2072, -0.3993])
After exponentiation:

tensor([4.2757, 1.4177, 0.4095, 1.2302, 0.6708])
After normalisation:

tensor([0.5342, 0.1771, 0.0512, 0.1537, 0.0838])

The two steps above are called softmax:
tensor([0.5342, 0.1771, 0.0512, 0.1537, 0.0838])

WE HAVE TO BE CAREFUL WITH SOFTMAX

It is a classical story in Deep Learning: values should be
kept 1in a reasonable range to avoid vanishing or exploding
gradients.

A second reason is softmax sensitivity to large numbers,
illustrated below:

torch.softmax(torch.tensor([0.1, -0.2, -0.3, 0.2, 0.5]), dim=-1)
tensor([0.1997, 0.1479, 0.1338, 0.2207, 0.2979])

torch.softmax(torch.tensor([0.1, -0.2, -0.3, 0.2, 0.5])*10, dim=-1)

tensor([1.7128e-02, 8.5274e-04, 3.1371e-04, 4.6558e-02, 9.3515e-01])

SCALED SELF-ATTENTION

Assume u,v are vectors of dimension d:

u,v ~ N(0,1)

What is the distribution of u \cdot v?

Answer: Exp[u \cdot v] = 0 but Var(u \cdot v) =d

But: Var(u \cdot v / sqgrt(d)) =1

SELF-ATTENTION HEAD

x = torch.randn(context length, input dim)

key = nn.Linear(input dim, head dim, bias=False)

query = nn.Linear(input dim, head dim, bias=False)
value = nn.Linear(input dim, output dim, bias=False)
k = key(x)

q = query(x)

v = value(x)

attention scores = q @ k.T
attention weights = torch.softmax(attention scores * head dim**-0.5, dim=-1)
context vectors = attention weights @ v

AS ANN.MODULE

class Head(nn.Module):
def init (self, context length, head input dim, head size, head output dim):
super()._ init ()
self.key = nn.Linear(head input dim, head size, bias=False)
self.query = nn.Linear(head input dim, head size, bias=False)
self.value = nn.Linear(head input dim, head output dim, bias=False)

def forward(self, x):
B, T, C = x.shape

1f training: B = batch size, else B = 1
T = context length

I = head input dim

H = head size

0 = head output dim

k = self.key(x) # (B, T, H)

q = self.query(x) # (B, T, H)

v = self.value(x) # (B, T, 0)

attention scores = q @ k.transpose(1,2) # (B, T, H) @ (B, H, T) -> (B, T, T)

attention weights = torch.softmax(attention scores * self.head size**-0.5, dim=-1) # (B, T, T)
context vectors = attention weights @ v # (B, T, T) @ (B, T, 0) -> (B, T, 0)

return context vectors

THE POWER OF PYTORCH BROADCASTING SEMANTICS

Did you notice that multiplying a tensor (B,T,H) with
another one (B,H,T) yields a tensor (B,T,T)?

This is called broadcasting semantics:

https://pytorch.org/docs/stable/notes/broadcasting.html

https://pytorch.org/docs/stable/notes/broadcasting.html

COMPLEXITY OF SELF-ATTENTION HEADS

C = context_length
I = dnput_dim

H = head_dim

O = output_dim

key(x): (C x I) x (I x H) -> C x H

query(x): (C x I) x (I x H) -> C x H
value(x): (C x I) x (I x 0) -> Cx O
attention_scores: (C x H) x (Hx C) -> C x C
context_vectors: (C x C) x (C x 0) -> C x O

The memory footprint is quadratic in context length!

MPORTA

The matrices for computing keys, queries, and values include
trainable parameters, so the attention mechanism learns where to
put attention in a data-driven way.

BUT: the three matrices are the same for all indices! In other
words, the attention mechanism is not aware of positions (neither
absolute nor relative).

ATTENTION HEADS AS KEY COMPONENTS IN A TRANSFORMER

“Every effort moves you forward” <~ The goal is to generate new
text one word at a time.

4
@T \ In this chapter, we
utput layers g
mocel T implement a GPT model

| including all of its
¥ subcomponents.

Transformer block *\
Transformer blocks are
N
a key component of

We implemented the A } GPT-like LLMs.
attention module in pg Masked multi-head

. attention
the previous chapter.

Embedding layers and M /
tokenization were \

covered in chapter 2.
Tokenized text

“Every effort moves you”

ENCODER / DECODER

4. The encoder returns
embedding vectors as

input to the decoder.
N

]
[Embeddings

3. The encoder has T
access to the

complete input |
text to produce

text encodings
used by the

decoder.

Encoder

2. The input text is)
prepared for the ~— E‘Preprocessing steps)
encoder. T

Input text

1. The input text to

be translated. — |*

“This is an example”

8. The complete output

(translation)
\

¥
“Das ist ein Beispiel”

Output layers

(: Decoderjzj//

f

[Preprocessing stepsT\”

|

Input text

The decoder
generates the
translated text
one word at a
time.

6. The input text is

prepared for the
decoder.

5. A partial output

“Das ist ein”

text: the model
completes the

translation one
word at a time.

DECODERS USE CAUSAL ATTENTION

Your
journey
starts
with
one

step

corresponding to “step” and “Your”

Your

journey

starts

with

one

step

0.19

0.16

0.16

0.15

0.17

0.15

0.20

0.16

0.16

0.14

0.16

0.14

0.20

0.16

0.16

0.14

0.16

0.14

0.18

0.16

0.16

0.15

0.16

0.15

0.18

0.16

0.16

0.15

0.16

0.15

0.19
4

0.16

0.16

0.15

0.16

0.15

\

Attention weight for input tokens

Your
journey
starts
with
one

step

&
1.0
0.55(|0.44
0.38(/0.30(/0.31
0.27110.24110.241/10.23
0.21(/0.191](0.191/0.18(/0.19
0.19]/0.16(|0.16(/0.15((0.16/|0.15

Masked out

/™ future tokens
for the “Your”
token

IMPLEMENTATION OF THE MASK

x = torch.randn(context length, input dim)

key = nn.Linear(input dim, head dim, bias=False)

query = nn.Linear(input dim, head dim, bias=False)
value = nn.Linear(input _dim, output dim, bias=False)
k = key(x)

g = query(x)

v = value(x)

attention scores = q @ k.T

mask = torch.triu(torch.ones(context length, context length), diagonal=1)
masked attention scores = attention scores.masked fill(mask.bool(), -torch.inf)

attention weights = torch.softmax(masked attention scores * head dim**-0.5, dim=-1)
context vectors = attention weights @ v

BERT . GPT

This is an example of how concise | can be This is an example of how concise | can be |«

| |
Encoder E Decoder]
Fills in the
missing T T Learns to

words to generate one
generate word at a
the original (Preprocessing steps) (Preprocessing steps) tme
sentence T T
Input text Input text
—+— Thisisan __ of how concise | __be This is an example of how concise | can |
! >
) (
Receives inputs where words Receives incomplete texts

are randomly masked during
training

AUTOREGRESSIVE

MODELS

AUTOREGRESSIVE

It means that for generating a single new token we feed the
model with the 1input + all tokens generated so far.

Creates the next Iteration 1
word based on

the input text
“This is”

Iteration 2

Output layers

A

Decoder
A

(Preprocessing steps)

A

Input text

“This”

“This is an”

Decoder
[Preprocessing steps]

|

Input text

>| “This is”

The output of the
previous round
serves as input to
the next round.

Iteration 3

“This is an example”

Output layers

i
(==
T
|

(Preprocessing steps)

|

Input text

= “This is an”

SLIDING WINDOWS

SLIDING WINDOWS

Text : ,
sample: [LLMS)[IearnJ to predict one word at a time
[LLMS Iearn][to]predict one word at a time
The LLM can’t
[LLMS learn toJ&)redictJ one word at a time access words past
the target.
(LLMs learn to predict](one Jword at a time
J{LLMS learn to predict oneJ[word] at a time
Input the. (LLMs learn to predict one wordJ[‘am
LLM receives
(LLMs learn to predict one word at)(a Jtime Target to
predict
[LLMs learn to predict one word at aJ[timeJ

PORTA

A Transformer consists of a number of “blocks” and “layers”,
each with the same signature:

Input: a sequence of vectors, one for each token

Output: a sequence of vectors, one for each token

WHAT ARE THE BENEFITS OF THE SLIDING WINDOWS!

Fix ¢ = context_length

A single data point (meaning, a sequence of c+1l tokens)
becomes c¢ data points, for free:

- A single tensor stores all c¢ data points
— Running the model once on the whole sequence yields
predictions for all c data points

BATCHING

MODELS” STGNATURES (WITHOUT BATCHING)

Input: x of shape (context_length), y of shape
(context_length)

Output: model(x,y) = (logits, loss) where

e logits has shape (context_length, vocab_size)
e 1loss has shape (context_length)

For each window, make the prediction and compute the loss

MODELS" STGNATURES WITH BATCHING

Input: X of shape (batch_size, context_length), Y of shape
(batch_size, context_length)

Output: model(X,Y) = (logits, loss) where

e logits has shape (batch_size, context_length, vocab_size)
e loss has shape (batch_size, context_length)

Note: this 1s called “batch-first”, sometimes the models are
“Input-first” (just a matter of definitions)

SHORTCUT
(ONNECTIONS

SHORTCUT CONNECTIONS

Shortcut connections (also called residual connections /
skip connections) provide a pathway for the gradient to flow
more easily during backpropagation, mitigating the vanishing
gradient problem and enabling the training of much deeper
networks

Concretely: each computation is added to the input (rather
than replacing the input)

Deep neural network

Layer 5 { =

Gradient: 0.0050 Linear

A

Layer 4 BELY
Gradient: 0.0013

Linear
A

Layer 3 GELU
Gradient: 0.0007

Linear
A

Layer 2 GELY
Gradient: 0.0001 d:)
Linear
A

Layer 1 { HE
Gradient: 0.0002
Linear

I,

Ui

[1.0, o -1.0]]

\
In very deep networks, the
gradient values in early layers
become vanishingly small

Deep neural network with

shortcut connections

Layer 5 GELU
Gradient: 1.32

it

Linear
A

O

Layer 4 SELU
Gradient: 0.26 :
Linear

A

@
@

Layer 3 GELU
Gradient: 0.32
Linear

A

Layer 2 GELY
Gradient: 0.20

GELU
oyt J CEEY)
Gradient: 0.22 (Linear)

/ A
f |[1Ao, 0.0, -1.0]]

{
|
\

The shortcut connections
help with maintaining
relatively large gradient
values even in early layers

Shortcut connection

__ adds input values to
»

the outputs of layer 1

DROPOUT

DROPOUT

Dropout is a regularization technique used in neural
networks to prevent overfitting. It works by randomly
dropping out (setting to zero) a certain proportion of
neurons in a layer during each training step.

e Prevents Overfitting: By randomly dropping out neurons, dropout prevents the network from learning
complex co-adaptations that are specific to the training data. This helps the model generalize better to
unseen data.

e Ensemble Effect: Dropout can be seen as training an ensemble of multiple smaller networks. Each training
step effectively samples a different subnetwork. At test time, the average of these subnetworks is used,
which improves the overall performance.

e Reduces Co-adaptation: Dropout forces neurons to learn more robust features that are not dependent on
the presence of specific other neurons. This leads to better feature representations.

DROPOUT

Dropout 1is only used during training (using model.train), it
must be deactivated for inference, using model.eval

LAYER NORMALLZATION

WHY RENORMALLZATION?

The classical story in Deep Learning already mentioned:
values should be kept in a reasonable range to avoid
vanishing or exploding gradients.

LAYER NORMALIZATION

’6
*G
’@
= 6
<
o
o
- O

[

{ = |

S W & oo e

(. _Apply layer normalization |) " :fl;;];t

4 @ ;@\/@i @ @ ey v Raation
(L):{::ts ‘k’q‘»‘", q ’

oy

CERACBAN

QD
(039

PRUPN

POSITIONAL

EMBEDDINGS

MPORTA

The matrices for computing keys, queries, and values include
trainable parameters, so the attention mechanism learns where to
put attention in a data-driven way.

BUT: the three matrices are the same for all indices! In other
words, the attention mechanism is not aware of positions (neither
absolute nor relative).

POSITIONAL EMBEDDINGS

Positional embeddings are added to bring information about
position of the tokens.

SIMPLEST VERSION - LEARNED POSITIONAL EMBEDDINGS

They are simply added to the token embeddings at the
beginning of the model:

tok emb = self.token embedding table(idx) # (B, T, I)
pos emb = self.position embedding table(torch.arange(T)) # (T, I)
X = tok emb + pos emb # (B, T, I)

[HE ORIGINAL POSITIONAL EMBEDDING

Positional encoding matrix heat map
|\

250

200

150

Position

100

50

................
T T

Dimension

—r 1.00

0.75

0.50

0.25

0.00

—0.25

—0.50

-0.75

THE FORMULA

Fix ¢ = context_length and d = 1input_dim
The positional embedding is a vector p : (c, d)

e p(pos, 2t) = sin(pos / 10_0007{2t/d})
e p(pos, 2t+1l) = cos(pos / 10_0007r{2t/d})

Remarks:

- added to the token embeddings (just as learned positional
embedding)

- p(ctk,d) is a linear function of p(c,d), suggesting that the model
should be able to pick up relative positions

THE MORE RECENT ROPE (ROTARY POSITIONAL EMBEDDINGS)

An dmportant difference:

— The original Transformer only adds positional embedding
to the token embeddings

- RoPE adds positional information in each attention head

ROPE rotates embeddings vectors by an angle which depends on
the position

THE FORMULA

Fix ¢ = context_length and d = input_dim. Let x : (c, d) the
embedding vector.

We group dimensions by pairs, and for pair (i,i+1l) we apply
a rotation of angle pos * theta_i where theta_i =
10_0007r{-2(i-1)/d}:

(#(pos, 1)): (cos(pos-@i) —sm(pos.oi))(z(pos, i))

z(pos,i+ 1) cos(pos - 6;) sin(pos - 0;) x(pos,i+ 1)

[RANSFORMER
ARCRITECTURE

[[-0.0256, ..., 0.6890],

[-0.0178, ..., 0.7431],

7 [0.4558, ..., 0.7814],
(/"/ [0.0702, ..., 0.7134]]

Outputs have the same

form and dimensions
as the inputs. ﬁ

(N

Linear layer

GELU activation

The transformer _ -
block

Linear layer

A view into the “feed

Masked multi-head forward” block

attention

The input tokens to be

LayerNorm 1

embedded - Shortcut connection
N G
<
Every — = [[0.2961, ..., 0.4604], This tensor represents an
effort — [0.2238, ..., 0.7598], embedded text sample
moves ——— = [0.6945, ..., 0.5963], * - that serves as input to the
transformer block.
you ——— [0.0890, ..., 0.5833]]

Each row is a 768-dimensional
vector representing an embedded
input token.

A 4 x 50,257-dimensional

tensor

The transformer block
is repeated 12 times. —|

The

goal is for these embeddings to

be converted back into text such

the last row represents the

word the model is supposed to
generate (here, the word “forward”).

that
[-0.0055, v =0.4747),
[0.2663, & 04224
[1.1146, 002765
[-0.8239, i -0.3993]]“'_/

12 X

A

Linear output layer

Final LayerNorm

(+)

LayerNorm 2

(+)

Masked multi-head
attention

LayerNorm 1

~

[}

(Posltlonal embedding Iayer)

r\

The last linear layer embeds
each token vector into a 50,257-

___ dimensional embedding, where
50,257 is the size of the
vocabulary.

The GPT code implementation
includes a token embedding
— and positional embedding layer
(see chapter 2).

t
(Token embedding layer j J
|

T
Tokenized text

Every effort moves you

PRETRAINING

BOILERPLATE TRAINING CODE

@torch.no grad()
def estimate loss(model):
out = {}
for split in ['train', 'val']:
losses = torch.zeros(eval iters)
for k in range(eval iters):
X, Y = get batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
return out

def train(model):
create a PyTorch optimizer
optimizer = torch.optim.AdamwW(model.parameters(), lr=learning rate)|

for iter in range(n iterations):
every once in a while evaluate the loss on train and validation sets
if iter % eval interval == 0 or iter == n_iterations - 1:
losses = estimate loss(model, eval iters)
print(f"step {iter}: train loss {losses['train']:.4f}, validation loss {losses['val']:.4f}")

X,Y = get batch("train")

_, loss = model(X, Y)
optimizer.zero grad(set to none=True)
loss.backward()

optimizer.step()

WHAT 15 CROSS ENTROPY LOSS!

Cross entropy measures the difference between probability distributions: it quantifies the
dissimilarity between the predicted probability distribution and the true probability distribution.

In language modelling we do not have the true distribution of words, it is approximated from a
training set:

N
1
H(T,q) = - Z N log, q(w:)
i=1

Where N is the number of tokens in the training set and q(x_i) is the probability that the model
outputs x_i.

CROSS ENTROPY LOSS

vocab size = 5

logits = torch.randn(vocab size)

print("The logits: \n", logits)

probs = torch.softmax(logits, 0)

print("After softmax: \n", probs)

logprobs = -probs.log()

print("The -log probabilities: \n", logprobs)

y = torch.randint(vocab size, (), dtype=torch.int64)
print("\nLet us consider a target y: ", y.item())

loss = F.cross entropy(logits, y)
print("The cross entropy loss between logits and y is: ", loss.item())

The logits:

tensor([0.0465, ©0.2514, -0.6639, -0.5434, -0.0025])
After softmax:

tensor([0.2367, 0.2905, 0.1163, 0.1312, 0.2253])
The -log probabilities:

tensor([1.4411, 1.2362, 2.1516, 2.0310, 1.4901])

Let us consider a target y: ©
The cross entropy loss between logits and y is: 1.4411031007766724

WHY 15 CROSS ENTROPY L0SS INTERESTING!

e Maximum likelihood estimation: Minimizing cross-entropy is equivalent to
maximizing the likelihood of the observed data.

e Encourages accurate probabilities: It encourages the model to produce
probabilities that closely match the true distribution, not just predict the correct
class.

e Smooth and differentiable: Cross-entropy loss is a smooth and differentiable
function, which is crucial for gradient-based optimization algorithms like gradient
descent.

e Avoids saturation: Unlike some other loss functions (e.g., mean squared error
with sigmoid), cross-entropy with softmax reduces the problem of saturating
gradients.

