Large Language Models: Transformers from scratch

Nathanaël Fijalkow CNRS, LaBRI, Bordeaux

Some references

- Build a Large Language Model by Sebastian Raschka
- <u>minGPT</u> / <u>nanoGPT</u> (and videos) by Andrej Karpathy
- <u>Understanding Deep Learning</u> by Simon Price

Most illustrations in these slides are from the "Build a Large Language Model" book, copyright Sebastian Raschka 2024

Other sources are mentioned when used

LANGUAGE MODELS

WHAT IS A LANGUAGE MODEL (LM)?

Input: a sentence (as a sequence of tokens)

Output: predict the next token

Basic examples:

- *Markov chain* is a LM, it gives a probabilistic distribution over the next token given the last token
- Naturally extended to *n-grams*: use the (n-1) last tokens to predict the next one

TOKENIZATION

TOKENIZATION: DECOMPOSING A SENTENCE INTO A SEQUENCE OF TOKENS

Every single explanation you will ever see about Language Models use **words, <u>BUT</u> in reality the unit object is <u>tokens</u>**

WHAT IT ACTUALLY LOOKS LIKE:

test = "hello world"
test_encoded = tokenizer.encode(test)
test_encoded, [tokenizer.decode([x]) for x in test_encoded], tokenizer.decode(test_encoded)

([258, 285, 111, 492], ['he', 'll', 'o', ' world'], 'hello world')

TOKENIZATION IS IMPORTANT, WE'LL TALK ABOUT IT LATER!

Bottom line: at this point, we have converted a text into a sequence of <u>integers</u> (which represent tokens).

GPT-2 has 50,257 tokens

EMBEDDINGS AND THE MULTI-LAYER PERCEPTRON

THE 2003 (SILENT) BREAKTHROUGH

Journal of Machine Learning Research 3 (2003) 1137-1155

Submitted 4/02; Published 2/03

A Neural Probabilistic Language Model

Yoshua Bengio Réjean Ducharme Pascal Vincent Christian Jauvin

Département d'Informatique et Recherche Opérationnelle Centre de Recherche Mathématiques Université de Montréal, Montréal, Québec, Canada BENGIOY@IRO.UMONTREAL.CA DUCHARME@IRO.UMONTREAL.CA VINCENTP@IRO.UMONTREAL.CA JAUVINC@IRO.UMONTREAL.CA

KEY IDEA: EMBEDDINGS

NN.EMBEDDING

import torch
import torch.nn as nn

n_token = 3 n_embed = 4 embedding = torch.nn.Embedding(n_token, n_embed) print("Weights of the embedding:\n", embedding.weight) print("Result of embedding token number 1:\n", embedding(torch.tensor([1]))) Weights of the embedding: Parameter containing: tensor([[-0.9252, 0.8805, -0.0214, 0.9724], [0.1136, 0.2035, 1.1415, 0.0875], [0.4177, 0.6348, 0.6271, 0.1938]], requires_grad=True) Result of embedding token number 1:

tensor([[0.1136, 0.2035, 1.1415, 0.0875]], grad fn=<EmbeddingBackward0>)

Advanced question: what is the difference between nn.embedding and nn.linear?

WHAT IS THE DIFFERENCE BETWEEN NN.EMBEDDING AND NN.LINEAR?

Both nn.Embedding and nn.Linear are modules in PyTorch that deal with transforming inputs, but they serve different purposes and operate differently:

nn.Embedding

- **Purpose:** This module is used to represent categorical data, such as words in a vocabulary. It creates a lookup table where each unique category (e.g., word) is assigned a unique vector (embedding).
- **Operation:** It works by looking up the embedding vector corresponding to the given input index. It's essentially a dictionary that maps indices to vectors.

nn.Linear

- **Purpose:** This module performs a linear transformation on the input data. It applies a weight matrix and a bias vector to the input.
- **Operation:** It calculates the dot product of the input with the weight matrix and adds the bias vector. This is a fundamental operation in many neural networks.

In Summary:

- Use nn.Embedding for representing categorical data as dense vectors.
- Use nn.Linear for performing linear transformations in neural networks.

FROM TEXT TO VECTORS

Bottom line: at this point, we have converted a text into a sequence of <u>(floating point) vectors</u>. These are (almost) the inputs for our models.

(We will discuss later positional embeddings.)

The smallest GPT-2 models (117M and 125M parameters) use an embedding size of 768 dimensions.

The largest GPT-3 model (175B parameters) uses an embedding size of 12,288 dimensions.

MULTI-LAYER PERCEPTRON (MLP)

```
class MLP(nn.Module):
    def __init__(self, context_length, n_embed, n_hidden):
        super().__init__()
        self.token_embedding_table = nn.Embedding(n_token, n_embed)
        self.net = nn.Sequential(
            nn.Linear(context_length * n_embed, n_hidden),
            nn.Tanh(),
            nn.Linear(n_hidden, n_token)
        )
```

TWO ISSUES WITH MLPS

- Long contexts require huge amount of compute
- Struggle with long-range dependencies

THE ATTENTION MECHANISM

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez^{*}[†] University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin*[‡] illia.polosukhin@gmail.com

ATTENTION IS ALL YOU NEED

The paper came in 2017, in a wave of more and more complicated architectures around recurrent neural networks (RNNs), aiming at dealing with long contexts.

It does not do anything radically new: it says that <u>"attention mechanism is enough to enable long contexts</u>".

A SIDE-NOTE

OpenAI scientist Noam Brown:

"The incredible progress in AI over the past five years

can be summarized in one word: scale."

Recently, older architectures (made parallelizable) reached similar performances as Transformers...

A SELF-ATTENTION HEAD

Input: an embedding vector x(i) for each token i

Output: a context vector z(i) for each token i

Intuition: z(i) gathers contextual information

COMPUTING CONTEXT VECTORS

Computing context vectors is very easy assuming we have computed **attention weights**: alpha(i,j) describes the importance of token j for token i.

JUST A MATRIX MULTIPLICATION ...

context_length = 3
embed_dim = 2
x = torch.randn(context_length, embed_dim)
attention_weights = torch.randn(context_length, context_length) # We'll discuss later how to compute them
context_vectors = attention_weights @ x

COMPUTING ATTENTION SCORES AND WEIGHTS

Now we focus on the core computation: attention scores and weights.

We first compute **attention scores**, and then normalise them into **attention weights**.

KEYS, QUERIES, AND VALUES

Input: an embedding vector x(i) for each token i

Output: for each token i:

- A <u>query</u> vector q(i), describing the information token i is interested in,
- A <u>key</u> vector k(i), whose goal is to match the relevant queries for token i,
- A <u>value</u> vector v(i), describing the information contained by token i.

INFORMATION - RETRIEVAL INTUITION

Think of a database, it holds (*keys*, *values*), and it can be accessed through *queries*.

Here, keys, queries, and values are vectors. To match a query with a key we simply do a dot-product.

So: the attention score alpha(i,j) is defined as the dot-product between q(i) and k(j)

KEYS, QUERIES, AND VALUES ARE COMPUTED BY MATRIX MULTIPLICATIONS

We introduce three matrices with trainable parameters:

- Wq for query,
- Wk for key,
- Wv for value.

FROM ATTENTION SCORES TO ATTENTION WEIGHTS

Attention scores are computed by a single matrix multiplication:

query @ key.T

Now, how do we normalise scores into weights?

SOFTMAX IS VECTOR NORMALISATION

context length = 5

```
attention_scores = torch.randn(context_length)
print("The attention scores: \n", attention_scores)
scores_exped = attention_scores.exp()
print("After exponentiation: \n", scores_exped)
probs = scores_exped / scores_exped.sum()
print("After normalisation: \n", probs)
print("\nThe two steps above are called softmax: \n", torch.softmax(attention scores, -1))
```

The attention scores: tensor([1.4529, 0.3491, -0.8928, 0.2072, -0.3993]) After exponentiation: tensor([4.2757, 1.4177, 0.4095, 1.2302, 0.6708]) After normalisation: tensor([0.5342, 0.1771, 0.0512, 0.1537, 0.0838])

The two steps above are called softmax: tensor([0.5342, 0.1771, 0.0512, 0.1537, 0.0838])

WE HAVE TO BE CAREFUL WITH SOFTMAX

It is a classical story in Deep Learning: values should be kept in a reasonable range to avoid vanishing or exploding gradients.

A second reason is softmax sensitivity to large numbers, illustrated below:

torch.softmax(torch.tensor([0.1, -0.2, -0.3, 0.2, 0.5]), dim=-1)

tensor([0.1997, 0.1479, 0.1338, 0.2207, 0.2979])

torch.softmax(torch.tensor([0.1, -0.2, -0.3, 0.2, 0.5])*10, dim=-1)

tensor([1.7128e-02, 8.5274e-04, 3.1371e-04, 4.6558e-02, 9.3515e-01])

<u>Scaled</u> Self-Attention

Assume u,v are vectors of dimension d:

 $u, v \sim N(0, 1)$

What is the distribution of u $\cdot v?$

Answer: Exp[u \cdot v] = 0 but Var(u \cdot v) = d
But: Var(u \cdot v / sqrt(d)) = 1

SELF-ATTENTION HEAD

```
x = torch.randn(context_length, input_dim)
key = nn.Linear(input_dim, head_dim, bias=False)
query = nn.Linear(input_dim, head_dim, bias=False)
value = nn.Linear(input_dim, output_dim, bias=False)
k = key(x)
q = query(x)
v = value(x)
attention_scores = q @ k.T
attention_weights = torch.softmax(attention_scores * head_dim**-0.5, dim=-1)
context vectors = attention weights @ v
```
AS A NN. MODULE

```
class Head(nn.Module):
   def init (self, context length, head input dim, head size, head output dim):
        super(). init ()
        self.key = nn.Linear(head input dim, head_size, bias=False)
        self.guery = nn.Linear(head input dim, head size, bias=False)
        self.value = nn.Linear(head input dim, head output dim, bias=False)
   def forward(self, x):
       B, T, C = x.shape
       # if training: B = batch size, else B = 1
       # T = context length
       # I = head input dim
       # H = head size
       \# 0 = head output dim
       k = self.key(x) \# (B, T, H)
       q = self.query(x) # (B, T, H)
       v = self.value(x) # (B, T, 0)
       attention scores = q @ k.transpose(1,2) # (B, T, H) @ (B, H, T) -> (B, T, T)
        attention weights = torch.softmax(attention scores * self.head size**-0.5, dim=-1) # (B, T, T)
        context vectors = attention weights @ v # (B, T, T) @ (B, T, 0) \rightarrow (B, T, 0)
       return context vectors
```

THE POWER OF PYTORCH BROADCASTING SEMANTICS

Did you notice that multiplying a tensor (B,T,H) with another one (B,H,T) yields a tensor (B,T,T)?

This is called broadcasting semantics:

https://pytorch.org/docs/stable/notes/broadcasting.html

COMPLEXITY OF SELF-ATTENTION HEADS

- C = context_length
- I = input_dim
- H = head_dim
- 0 = output_dim
 - key(x): (C x I) x (I x H) \rightarrow C x H
 - query(x): (C x I) x (I x H) \rightarrow C x H
 - value(x): (C x I) x (I x 0) -> C x 0
 - attention_scores: (C x H) x (H x C) -> C x C
 - context_vectors: (C x C) x (C x 0) \rightarrow C x 0

The memory footprint is quadratic in context length!

The matrices for computing keys, queries, and values include trainable parameters, so the attention mechanism learns where to put attention in a data-driven way.

BUT: the three matrices are the same for all indices! In other words, the attention mechanism is not aware of <u>positions</u> (neither absolute nor relative).

ATTENTION HEADS AS KEY COMPONENTS IN A TRANSFORMER

ENCODER / DECODER

DECODERS USE CAUSAL ATTENTION

Attention weight for input tokens corresponding to "step" and "Your"

IMPLEMENTATION OF THE MASK

```
x = torch.randn(context length, input dim)
key = nn.Linear(input dim, head dim, bias=False)
guery = nn.Linear(input dim, head dim, bias=False)
value = nn.Linear(input dim, output dim, bias=False)
k = key(x)
q = query(x)
v = value(x)
attention scores = q @ k.T
mask = torch.triu(torch.ones(context length, context length), diagonal=1)
masked attention scores = attention scores.masked fill(mask.bool(), -torch.inf)
attention weights = torch.softmax(masked attention scores * head dim**-0.5, dim=-1)
context vectors = attention weights @ v
```


AUTOREGRESSIVE MODELS

AUTOREGRESSIVE

It means that for generating a single new token we feed the model with the input + all tokens generated so far.

SLIDING WINDOWS

SLIDING WINDOWS

A Transformer consists of a number of "blocks" and "layers", each with the same signature:

Input: a sequence of vectors, one for each token

Output: a sequence of vectors, one for each token

WHAT ARE THE BENEFITS OF THE SLIDING WINDOWS?

Fix c = context_length

A single data point (meaning, a sequence of c+1 tokens) becomes c data points, <u>for free</u>:

- A single tensor stores all c data points
- Running the model once on the whole sequence yields predictions for all c data points

BATCHING

MODELS' SIGNATURES (WITHOUT BATCHING)

Input: x of shape (context_length), y of shape
(context_length)

Output: model(x,y) = (logits, loss) where

- logits has shape (context_length, vocab_size)
- loss has shape (context_length)

For each window, make the prediction and compute the loss

MODELS' SIGNATURES WITH BATCHING

Input: X of shape (batch_size, context_length), Y of shape
(batch_size, context_length)

Output: model(X,Y) = (logits, loss) where

- logits has shape (batch_size, context_length, vocab_size)
- loss has shape (batch_size, context_length)

<u>Note</u>: this is called "batch-first", sometimes the models are "input-first" (just a matter of definitions)

SHORTCUT CONNECTIONS

SHORTCUT CONNECTIONS

Shortcut connections (also called residual connections / skip connections) provide a pathway for the gradient to flow more easily during backpropagation, mitigating the vanishing gradient problem and enabling the training of much deeper networks

Concretely: each computation is added to the input (rather than replacing the input)

Dropout

DROPOUT

Dropout is a regularization technique used in neural networks to prevent overfitting. It works by randomly dropping out (setting to zero) a certain proportion of neurons in a layer during each training step.

- **Prevents Overfitting:** By randomly dropping out neurons, dropout prevents the network from learning complex co-adaptations that are specific to the training data. This helps the model generalize better to unseen data.
- **Ensemble Effect:** Dropout can be seen as training an ensemble of multiple smaller networks. Each training step effectively samples a different subnetwork. At test time, the average of these subnetworks is used, which improves the overall performance.
- **Reduces Co-adaptation:** Dropout forces neurons to learn more robust features that are not dependent on the presence of specific other neurons. This leads to better feature representations.

DROPOUT

Dropout is only used during training (using *model.train*), it must be deactivated for inference, using *model.eval*

LAYER NORMALIZATION

WHY RENORMALIZATION?

The classical story in Deep Learning already mentioned: values should be kept in a reasonable range to avoid vanishing or exploding gradients.

LAYER NORMALIZATION

POSITIONAL EMBEDDINGS

The matrices for computing keys, queries, and values include trainable parameters, so the attention mechanism learns where to put attention in a data-driven way.

BUT: the three matrices are the same for all indices! In other words, the attention mechanism is not aware of <u>positions</u> (neither absolute nor relative).

POSITIONAL EMBEDDINGS

Positional embeddings are added to bring information about position of the tokens.

SIMPLEST VERSION: LEARNED POSITIONAL EMBEDDINGS

They are simply added to the token embeddings at the beginning of the model:

```
tok_emb = self.token_embedding_table(idx) # (B, T, I)
pos_emb = self.position_embedding_table(torch.arange(T)) # (T, I)
x = tok_emb + pos_emb # (B, T, I)
```

THE ORIGINAL POSITIONAL EMBEDDING

THE FORMULA

Fix c = context_length and d = input_dim

The positional embedding is a vector p : (c, d)

- p(pos, 2t) = sin(pos / 10_000^{2t/d})
- p(pos, 2t+1) = cos(pos / 10_000^{2t/d})

Remarks:

- added to the token embeddings (just as learned positional embedding)
- p(c+k,d) is a linear function of p(c,d), suggesting that the model should be able to pick up relative positions

THE MORE RECENT ROPE (ROTARY POSITIONAL EMBEDDINGS)

An important difference:

- The original Transformer **only** adds positional embedding to the token embeddings
- RoPE adds positional information in each attention head

RoPE rotates embeddings vectors by an angle which depends on the position
THE FORMULA

Fix c = context_length and d = input_dim. Let x : (c, d) the embedding vector.

We group dimensions by pairs, and for pair (i,i+1) we apply a rotation of angle pos * theta_i where theta_i = 10_000^{-2(i-1)/d}:

$$\begin{pmatrix} \widehat{x}(pos,i)\\ \widehat{x}(pos,i+1) \end{pmatrix} = \begin{pmatrix} \cos(pos \cdot \theta_i) & -\sin(pos \cdot \theta_i)\\ \cos(pos \cdot \theta_i) & \sin(pos \cdot \theta_i) \end{pmatrix} \cdot \begin{pmatrix} x(pos,i)\\ x(pos,i+1) \end{pmatrix}$$

TRANSFORMER ARCHITECTURE

PRETRAINING

BOILERPLATE TRAINING CODE

```
@torch.no_grad()
def estimate_loss(model):
    out = {}
    for split in ['train', 'val']:
        losses = torch.zeros(eval_iters)
        for k in range(eval_iters):
            X, Y = get_batch(split)
            logits, loss = model(X, Y)
            losses[k] = loss.item()
        out[split] = losses.mean()
    return out
```

```
def train(model):
    # create a PyTorch optimizer
    optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)|
    for iter in range(n_iterations):
        # every once in a while evaluate the loss on train and validation sets
        if iter % eval_interval == 0 or iter == n_iterations - 1:
            losses = estimate_loss(model, eval_iters)
            print(f"step {iter}: train loss {losses['train']:.4f}, validation loss {losses['val']:.4f}")
        X,Y = get_batch("train")
        _, loss = model(X, Y)
        optimizer.zero_grad(set_to_none=True)
        loss.backward()
        optimizer.step()
```

WHAT IS CROSS ENTROPY LOSS?

Cross entropy measures the difference between probability distributions: it quantifies the dissimilarity between the predicted probability distribution and the true probability distribution.

In language modelling we do not have the true distribution of words, it is approximated from a training set:

$$H(T,q)=-\sum_{i=1}^Nrac{1}{N}\log_2 q(x_i)$$

Where N is the number of tokens in the training set and $q(x_i)$ is the probability that the model outputs x_i .

CROSS ENTROPY LOSS

```
vocab size = 5
logits = torch.randn(vocab size)
print("The logits: \n", logits)
probs = torch.softmax(logits, 0)
print("After softmax: \n", probs)
logprobs = -probs.log()
print("The -log probabilities: \n", logprobs)
y = torch.randint(vocab size, (), dtype=torch.int64)
print("\nLet us consider a target y: ", y.item())
loss = F.cross entropy(logits, y)
print("The cross entropy loss between logits and y is: ", loss.item())
The logits:
 tensor([ 0.0465, 0.2514, -0.6639, -0.5434, -0.0025])
After softmax:
 tensor([0.2367, 0.2905, 0.1163, 0.1312, 0.2253])
The -log probabilities:
 tensor([1.4411, 1.2362, 2.1516, 2.0310, 1.4901])
Let us consider a target y: 0
The cross entropy loss between logits and y is: 1.4411031007766724
```

WHY IS CROSS ENTROPY LOSS INTERESTING?

- **Maximum likelihood estimation:** Minimizing cross-entropy is equivalent to maximizing the likelihood of the observed data.
- Encourages accurate probabilities: It encourages the model to produce probabilities that closely match the true distribution, not just predict the correct class.
- **Smooth and differentiable:** Cross-entropy loss is a smooth and differentiable function, which is crucial for gradient-based optimization algorithms like gradient descent.
- Avoids saturation: Unlike some other loss functions (e.g., mean squared error with sigmoid), cross-entropy with softmax reduces the problem of saturating gradients.