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Some references
- Build a Large Language Model by Sebastian Raschka
- minGPT / nanoGPT (and videos) by Andrej Karpathy
- Understanding Deep Learning by Simon Price

https://www.manning.com/books/build-a-large-language-model-from-scratch
https://github.com/karpathy/minGPT
https://github.com/karpathy/nanoGPT
https://udlbook.github.io/udlbook/


Most illustrations in these slides are from the “Build a 
Large Language Model” book, copyright Sebastian Raschka 2024

Other sources are mentioned when used



Language models



What is a language model (LM)?
Input: a sentence (as a sequence of tokens)

Output: predict the next token

Basic examples: 

● Markov chain is a LM, it gives a probabilistic 
distribution over the next token given the last token

● Naturally extended to n-grams: use the (n-1) last tokens 
to predict the next one



TOKENIZATION



Tokenization: decomposing a sentence into a sequence of  tokens



Words != Tokens

Every single explanation you will ever see about Language 
Models use words, BUT in reality the unit object is tokens



What it actually looks like:

Tokenization is important, we’ll talk about it later!
Bottom line: at this point, we have converted a text 
into a sequence of integers (which represent tokens).

GPT-2 has 50,257 tokens



Embeddings and the 
Multi-layer 
Perceptron



The 2003 (silent) breakthrough



Key idea: Embeddings



nn.Embedding

Advanced question: what is the difference 
between nn.embedding and nn.linear?



What is the difference between nn.embedding and nn.linear?
Both nn.Embedding  and nn.Linear are modules in PyTorch that deal with transforming inputs, but they serve different purposes and operate differently:

nn.Embedding

● Purpose: This module is used to represent categorical data, such as words in a vocabulary. It creates a lookup table where each unique category 

(e.g., word) is assigned a unique vector (embedding).

● Operation: It works by looking up the embedding vector corresponding to the given input index. It's essentially a dictionary that maps indices to 

vectors.

nn.Linear

● Purpose: This module performs a linear transformation on the input data. It applies a weight matrix and a bias vector to the input.

● Operation: It calculates the dot product of the input with the weight matrix and adds the bias vector. This is a fundamental operation in many neural 

networks.

In Summary:

● Use nn.Embedding  for representing categorical data as dense vectors.

● Use nn.Linear for performing linear transformations in neural networks.



From text to vectors



Bottom line: at this point, we have converted a text into a 
sequence of (floating point) vectors. These are (almost) the 
inputs for our models.

(We will discuss later positional embeddings.)



Statistics
The smallest GPT-2 models (117M and 125M parameters) use an 
embedding size of 768 dimensions.

The largest GPT-3 model (175B parameters) uses an embedding 
size of 12,288 dimensions.



Multi-layer Perceptron (MLP)



Two issues with MLPs
- Long contexts require huge amount of compute
- Struggle with long-range dependencies



The attention 
mechanism





Attention is all you need
The paper came in 2017, in a wave of more and more 
complicated architectures around recurrent neural networks 
(RNNs), aiming at dealing with long contexts.

It does not do anything radically new: it says that 
“attention mechanism is enough to enable long contexts”.



A side-note
OpenAI scientist Noam Brown:

“The incredible progress in AI over the past five years 

can be summarized in one word: scale.”

Recently, older architectures (made parallelizable) reached 
similar performances as Transformers…



A self-attention head
Input: an embedding vector x(i) for each token i

Output: a context vector z(i) for each token i

Intuition: z(i) gathers contextual information



Computing context vectors
Computing context vectors is very easy assuming we have 
computed attention weights: alpha(i,j) describes the 
importance of token j for token i.





Just a matrix multiplication…



Computing attention scores and weights
Now we focus on the core computation: attention scores and 
weights.

We first compute attention scores, and then normalise them 
into attention weights.



Keys, queries, and values
Input: an embedding vector x(i) for each token i

Output: for each token i:

- A query vector q(i), describing the information token i 
is interested in,

- A key vector k(i), whose goal is to match the relevant 
queries for token i,

- A value vector v(i), describing the information contained 
by token i.



Information-retrieval intuition
Think of a database, it holds (keys, values), and it can be 
accessed through queries.

Here, keys, queries, and values are vectors. To match a 
query with a key we simply do a dot-product.

So: the attention score alpha(i,j) is defined as the 
dot-product between q(i) and k(j)



Keys, queries, and values are computed by matrix multiplications

We introduce three matrices with 
trainable parameters:

- Wq for query,
- Wk for key,
- Wv for value.



From attention scores to attention weights
Attention scores are computed by a single matrix 
multiplication:

query @ key.T

Now, how do we normalise scores into weights?



Softmax is vector normalisation



We have to be careful with softmax
It is a classical story in Deep Learning: values should be 
kept in a reasonable range to avoid vanishing or exploding 
gradients. 

A second reason is softmax sensitivity to large numbers, 
illustrated below:



Assume u,v are vectors of dimension d:

u,v ~ N(0,1)

What is the distribution of u \cdot v?

Answer: Exp[u \cdot v] = 0 but Var(u \cdot v) = d

But: Var(u \cdot v / sqrt(d)) = 1

Scaled self-attention 



Self-attention head



As a NN.module



The power of Pytorch broadcasting semantics
Did you notice that multiplying a tensor (B,T,H) with 
another one (B,H,T) yields a tensor (B,T,T)?

This is called broadcasting semantics:

https://pytorch.org/docs/stable/notes/broadcasting.html

https://pytorch.org/docs/stable/notes/broadcasting.html


Complexity of self-attention heads
C = context_length

I = input_dim

H = head_dim

O = output_dim

- key(x): (C x I) x (I x H) -> C x H
- query(x): (C x I) x (I x H) -> C x H
- value(x): (C x I) x (I x O) -> C x O
- attention_scores: (C x H) x (H x C) -> C x C
- context_vectors: (C x C) x (C x O) -> C x O

The memory footprint is quadratic in context length!



Important
The matrices for computing keys, queries, and values include 

trainable parameters, so the attention mechanism learns where to 
put attention in a data-driven way.

BUT: the three matrices are the same for all indices! In other 
words, the attention mechanism is not aware of positions (neither 

absolute nor relative).



Attention heads as key components in a Transformer



Encoder / decoder





Decoders use causal attention



Implementation of the mask





Autoregressive 
models



autoregressive

It means that for generating a single new token we feed the 
model with the input + all tokens generated so far.





Sliding windows



Sliding windows



IMPORTANT
A Transformer consists of a number of “blocks” and “layers”, 

each with the same signature:

Input: a sequence of vectors, one for each token

Output: a sequence of vectors, one for each token



What are the benefits of the sliding windows?
Fix c = context_length

A single data point (meaning, a sequence of c+1 tokens) 
becomes c data points, for free:

- A single tensor stores all c data points
- Running the model once on the whole sequence yields 

predictions for all c data points



Batching



Models’ signatures (without batching)
Input: x of shape (context_length), y of shape 
(context_length)

Output: model(x,y) = (logits, loss) where

● logits has shape (context_length, vocab_size)
● loss has shape (context_length)

For each window, make the prediction and compute the loss 



Models’ signatures with batching
Input: X of shape (batch_size, context_length), Y of shape 
(batch_size, context_length)

Output: model(X,Y) = (logits, loss) where

● logits has shape (batch_size, context_length, vocab_size)
● loss has shape (batch_size, context_length)  

Note: this is called “batch-first”, sometimes the models are 
“input-first” (just a matter of definitions)



Shortcut 
connections



shortcut connections

Shortcut connections (also called residual connections / 
skip connections) provide a pathway for the gradient to flow 
more easily during backpropagation, mitigating the vanishing 
gradient problem and enabling the training of much deeper 
networks

Concretely: each computation is added to the input (rather 
than replacing the input)





Dropout



dropout
Dropout is a regularization technique used in neural 
networks to prevent overfitting. It works by randomly 
dropping out (setting to zero) a certain proportion of 
neurons in a layer during each training step.

● Prevents Overfitting: By randomly dropping out neurons, dropout prevents the network from learning 
complex co-adaptations that are specific to the training data. This helps the model generalize better to 
unseen data.

● Ensemble Effect: Dropout can be seen as training an ensemble of multiple smaller networks. Each training 
step effectively samples a different subnetwork. At test time, the average of these subnetworks is used, 
which improves the overall performance.

● Reduces Co-adaptation: Dropout forces neurons to learn more robust features that are not dependent on 
the presence of specific other neurons. This leads to better feature representations.



dropout
Dropout is only used during training (using model.train), it 
must be deactivated for inference, using model.eval



Layer normalization



Why renormalization?
The classical story in Deep Learning already mentioned: 
values should be kept in a reasonable range to avoid 
vanishing or exploding gradients. 



Layer normalization



Positional 
embeddings



Important
The matrices for computing keys, queries, and values include 

trainable parameters, so the attention mechanism learns where to 
put attention in a data-driven way.

BUT: the three matrices are the same for all indices! In other 
words, the attention mechanism is not aware of positions (neither 

absolute nor relative).



Positional embeddings
Positional embeddings are added to bring information about 
position of the tokens.



Simplest version: learned positional embeddings
They are simply added to the token embeddings at the 
beginning of the model:



The original positional embedding



The formula
Fix c = context_length and d = input_dim

The positional embedding is a vector p : (c, d) 

● p(pos, 2t) = sin(pos / 10_000^{2t/d}) 
● p(pos, 2t+1) = cos(pos / 10_000^{2t/d})

Remarks: 

- added to the token embeddings (just as learned positional 
embedding)

- p(c+k,d) is a linear function of p(c,d), suggesting that the model 
should be able to pick up relative positions



The more recent RoPE (Rotary Positional Embeddings)
An important difference:

- The original Transformer only adds positional embedding 
to the token embeddings

- RoPE adds positional information in each attention head

RoPE rotates embeddings vectors by an angle which depends on 
the position



The formula
Fix c = context_length and d = input_dim. Let x : (c, d) the 
embedding vector. 

We group dimensions by pairs, and for pair (i,i+1) we apply 
a rotation of angle pos * theta_i where theta_i = 
10_000^{-2(i-1)/d}:



Transformer 
architecture







Pretraining



Boilerplate training code



What is cross entropy loss?
Cross entropy measures the difference between probability distributions: it quantifies the 
dissimilarity between the predicted probability distribution and the true probability distribution.

In language modelling we do not have the true distribution of words, it is approximated from a 
training set:

Where N is the number of tokens in the training set and q(x_i) is the probability that the model 
outputs x_i.



Cross entropy loss



Why is cross entropy loss interesting?
● Maximum likelihood estimation: Minimizing cross-entropy is equivalent to 

maximizing the likelihood of the observed data.
● Encourages accurate probabilities: It encourages the model to produce 

probabilities that closely match the true distribution, not just predict the correct 
class.

● Smooth and differentiable: Cross-entropy loss is a smooth and differentiable 
function, which is crucial for gradient-based optimization algorithms like gradient 
descent.

● Avoids saturation: Unlike some other loss functions (e.g., mean squared error 
with sigmoid), cross-entropy with softmax reduces the problem of saturating 
gradients.


