
Large Language Models:
Tokenization

Nathanaël Fijalkow
CNRS, LaBRI, Bordeaux

Tokenization
- Basics of encoding
- Pre-tokenization
- Byte-Pair Encoding

(BPE)
- WordPiece

Credits
Images and contents from Chapter 6 of Hugging Face’s course
on NLP:

https://huggingface.co/learn/nlp-course/chapter6

https://huggingface.co/learn/nlp-course/chapter6

Basics
A bit = 0 or 1

A byte = typically an octet, meaning 8 bits

Character encodings:

- ASCII (code unit: 7 bits)
- Unicode: UTF-8, UTF-16, UTF-32 (code unit: 8,16,32 bits)

98% of WWW is UTF-8. Technically UTF is variable-length (so
infinite…)

Attention
We are only considering “subword tokenization algorithms”

but there are other tokenization algorithms…

The full tokenization pipeline

Normalization
The normalization step involves some general cleanup, such as removing needless whitespace, lowercasing, and/or
removing accents.

Pre-tokenization
Breaks a text into words (keeping the offsets):

Pre-tokenization
Again there are many variants…

SentencePiece is a simple pre-tokenization algorithm:

- Treats everything as Unicode characters
- Replaces spaces with “_”

Tokenization algorithms
Two components:

- The training algorithm: preprocessing on a training set,
to determine what will be the tokens

- The tokenization algorithm: at run time, transforming
text inputs into sequences of tokens

Byte-Pair Encoding
Developed by OpenAI for GPT-2

Pre-tokenization adds “Ġ” before each word except the first:

BPE in one slide
The goal is to learn merge rules, of the form:

(“Amer”, “ica”) -> “America”

Training: starting from characters, we create rules by
merging the most frequent pairs, until we reach the budget
number of tokens

Processing: to process an input text we apply rules greedily

Example corpus

BPE training algorithm, step 0: Compute frequencies

BPE training algorithm, step 1: collect characters

“<|endoftext|>” is a special token

BPE training algorithm, step 2: Compute pair frequencies

BPE training algorithm, step 3: Add a merge rule

BPE training algorithm: the loop

BPE Tokenization algorithm

BPE Tokenization algorithm can fail?
What happens if there’s an unknown character? This code
would fail…

In actual (byte-level) implementations, it cannot happen.

In practice
Tiktoken implements BPE:

https://github.com/openai/tiktoken

https://github.com/openai/tiktoken

Wordpiece
Developed by Google for BERT (but never open sourced!)

The pre-tokenizer feels a lot more civilized:

Wordpiece in one slide
The goal is to learn merge rules, of the form:

(“Amer”, “ica”) -> “America”

Training: starting from characters, we create tokens by
merging pairs with highest score, until we reach the budget
number of tokens

Processing: to process an input text we look for the longest
token and continue recursively (not using rules!)

Wordpiece training algorithm, step 0: compute characters

Wordpiece training algorithm, step 1: compute frequencies

Wordpiece training algorithm, step 2: compute scores
WordPiece computes a score for each pair, using the following formula:

freq_of_pair / (freq_of_first_element × freq_of_second_element)

The algorithm prioritizes the merging of pairs where the individual parts are less frequent in the vocabulary:

- It won’t necessarily merge ("un", "##able") even if that pair occurs very frequently in the vocabulary,
because the two pairs "un" and "##able" will likely each appear in a lot of other words and have a high
frequency.

- In contrast, a pair like ("hu", "##gging") will probably be merged faster (assuming the word “hugging”
appears often in the vocabulary) since "hu" and "##gging" are likely to be less frequent individually.

Wordpiece training algorithm, step 2: compute scores

Wordpiece training algorithm: the Loop

Wordpiece tokenization algorithm

Summary for the two algorithms

