Large Language Models:
Hugging Face

Nathanaél Fijalkow
CNRS, LaBRI, Bordeaux

universite
C' “BORDEAUX

SOME HUGGING FACE

PROPAGANDA

MODELS

THREE OPTIONS

(1) Inference-as—-a-service: through an API
(2) On the cloud: as managed service or custom deployment
(3) Locally: possible for small enough models (Ollama)

Hugging Face enables all three options!

HTTPS: //HUGGINGFACE.CO/

S

It is a primarily a GitHub for models, but also develops a
lot of useful packages and resources!

ARCHITECTURES

CPUs: While generally slower for LLMs, they are more accessible and cost-effective for smaller models or less
demanding tasks.

GPUs: The most common choice for LLMs, offering significant performance improvements due to their parallel
processing capabilities.

TPUs: Google's specialized hardware designed for machine learning, providing even faster performance than
GPUs for certain models.

Distributed Systems: Multiple processors (CPUs, GPUs, or TPUs) working together to handle large models or

high inference demands. Use accelerate: https://huggingface.co/docs/accelerate/index

Edge Devices: Smaller, less powerful devices like smartphones and loT devices can run optimized LLMs for

specific tasks.

https://huggingface.co/docs/accelerate/index

HOW T0 GET GPU RESOURCES £OR FREFT

Anyone: Google colab, Kaggle, Codesphere, Sagemaker..

Academics:

- grid5000 https://www.grid5000.fr/
- Jean-Zay https://www.edari.fr/

https://www.grid5000.fr/w/Grid5000:Home
https://www.edari.fr/

HOW MUCH MEMORY FOR A 3B MODEL!

The memory required to hold a 3B parameter LLM in memory depends heavily on the data type used to store the model
weights:
Full Precision (FP32):
e Each parameter requires 32 bits (4 bytes)
e Total memory: 3 billion parameters * 4 bytes/parameter = 12 GB
Heavily Quantized (INT4):

e Each parameter requires 4 bits (0.5 bytes)

e Total memory: 3 billion parameters * 0.5 bytes/parameter = 1.5 GB

This is only for holding the model in memory! You should aim at 4x this for inference and fine-tuning.

PIPELINE AND TASKS

IASKS

1. Text Classification

- Sentiment analysis: Determining the emotional tone of a text (positive, negative,
neutral).

- Topic classification: Categorizing text into predefined topics.

- Spam detection: Identifying unsolicited or unwanted messages.

- Natural language inference: Determining the relationship between two sentences
(entailment, contradiction, neutral).

2. Token Classification

- Named entity recognition (NER): Identifying and classifying named entities in text
(people, organizations, locations, etc.).

- Part-of-speech (P0OS) tagging: Assigning grammatical tags to words (noun, verb,
adjective, etc.).

3. Question Answering

- Extractive question answering: Finding the answer to a question within a given
text.

- Multiple choice question answering: Selecting the best answer from a set of
options.

MORE TASKS

4, Text Generation

- Text summarization: Generating a concise summary of a longer text.

- Translation: Translating text from one language to another.

- Dialogue generation: Creating conversational responses in a chatbot.
- Code generation: Generating code in various programming languages.

5. Text2Text Generation

- Paraphrasing: Rewriting a text while preserving its meaning.
- Summarization: Generating a concise summary of a longer text.
- Translation: Translating text from one language to another.

6. Fill-Mask
- Masked language modeling: Predicting missing words in a text.
7. Feature Extraction

- Generating embeddings: Creating numerical representations of text for use
in other machine learning tasks.

PIPELINE: CONCISE BUT LITTLE CONTROL

from transformers import pipeline

Create a sentiment analysis pipeline
classifier = pipeline(task="sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")

Run inference
result = classifier("This course is f***ing great!")

Print the result
print(result)

[{'label’: 'POSITIVE', ‘score': 0.9998470544815063}]

{0U CAN CHOOSE THE DEVICE (CPU, GPU)

from transformers import pipeline

Create a sentiment analysis pipeline

classifier = pipeline(task="sentiment-analysis",
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english",
device="cuda")

Run inference
result = classifier("This course is f***ing great!")

Print the result
print(result)

The same model can be used for different tasks!

' IMPORTANT !! Set torch dtype="auto" to load the weights in the data type defined in a model's config.json file to automatically load the most
memory-optimal data type.

from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from pretrained(model="distilbert/distilbert-base-uncased",
torch_dtype="auto")

from transformers import AutoModelForTokenClassification

model = AutoModelForTokenClassification.from pretrained("distilbert/distilbert-base-uncased”,
num_ labels = 5,
torch dtype="auto")

Wt

from transformers import AutoModelForTokenClassification

model = AutoModelForTokenClassification.from pretrained("distilbert/distilbert-base-uncased”,
num_labels = 5,

torch_dtype="auto")

config.json: 100% [4837483 [00:00<00:00, 9.73KBIS]
model.safetensors: 100% [268M/268M [00:05<00:00, 51.5MBIs]

Some weights of DistilBertForTokenClassification were not initialized from the model checkpoint at distilbert/dist

ilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

Hugging Face: “Don’t worry, this is completely normal! The pretrained head of the BERT model is discarded, and
replaced with a randomly initialized classification head. You will fine-tune this new model head on your sequence

classification task, transferring the knowledge of the pretrained model to it.”

SERVERLESS INFERENCE APT: SLOW BUT FREE

from huggingface hub import InferenceClient

client = InferenceClient(
"cardiffnlp/twitter-roberta-base-sentiment-latest",
token="T0 BE FILLED HERE",

)

client.text classification("Today is a great day")

[TextClassificationOutputElement (label="'positive', score=0.9836677312850952),
TextClassificationOutputElement(label="neutral', score=0.01135887298732996),
TextClassificationOutputElement(label="'negative', score=0.004973393864929676)]

PIPELINE 15 6OOD T0 GET STARTED

But soon you feel limited.

Let’s see how to get a bit more control!

[OKENTZERS

ONLY DEALING WITH TEXT HERE..

The tokenizer is for dealing with texts. For other formats:

- Speech and audio, use a Feature extractor to extract
sequential features from audio waveforms and convert them
into tensors.

- Image inputs use a ImageProcessor to convert images into
tensors.

— Multimodal inputs, use a Processor to combine a tokenizer
and a feature extractor or image processor.

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from pretrained("google-bert/bert-base-uncased")
tokenizer

BertTokenizerFast(name or path='google-bert/bert-base-uncased', vocab size=30522, model max length=512, is fast=Tr
ue, padding side='right', truncation side='right', special tokens={'unk token': '[UNK]', 'sep token': '[SEP]', 'pa
d token': '[PAD]', 'cls token': '[CLS]', 'mask token': '[MASK]'}, clean up tokenization spaces=True), added token
s _decoder={
0: AddedToken("[PAD]", rstrip=False, lstrip=False, single word=False, normalized=False, special=True),
100: AddedToken("[UNK]", rstrip=False, lstrip=False, single word=False, normalized=False, special=True),
101: AddedToken("[CLS]", rstrip=False, lstrip=False, single word=False, normalized=False, special=True),
102: AddedToken("[SEP]", rstrip=False, lstrip=False, single word=False, normalized=False, special=True),
103: AddedToken("[MASK]", rstrip=False, lstrip=False, single word=False, normalized=False, special=True),

sequence = "In a hole in the ground there lived a hobbit."
print(tokenizer(sequence))

{'input_ids': [101, 1999, 1037, 4920, 1999, 1996, 2598, 2045, 2973, 1037, 7570, 10322, 4183, 1012, 102], 'token_ty
pe ddst: [0, 010, 0, 9; 0} 10; 0,05 05 19,105 0; 95 10]; “attention mask'z [1y; 1 25 s By 15 Ay 2y 15 1 @, 25 3,
1, 11}

THE NASTY BUSINESS OF DATA PREPROCESSING

You want to create batches (a lot more efficient!). This
means that you may need to:

- Pad: add a special token [PAD] to make sure all inputs
have the same size

- Truncate: if some inputs are larger than the context
length of your model, you need to break them up into more
inputs (but it’s not that simple: better introduce some
overlapping!)

Good news: Tokenizer does that for you!

batch sentences = [
"But what about second breakfast?",
“Don't think he knows about second breakfast, Pip.",
"What about elevensies?",
|
encoded input = tokenizer(batch sentences, padding=True, truncation=True)
print(encoded input)

{'input _ids': [[101, 2021, 2054, 2055, 2117, 6350, 1029, 102, 0, 0, O, O, 0, O], [101], 2123, 1005, 1056, 2228, 200
2, 4282, 2055, 2117, 6350, 1010, 28315, 1012, 102], [1061, 2054, 2055, 5408, 14625, 1029, 102, 0, 0, 0, 0, 0, O,
011, “token type ids': [[@; @; 0, ©; 6; 0,0, 0, 6; 0;9; 0, 0, 6], [0;;0; 0, 0,0, 6; 0; 0,0, 6 0;0;0; 0],
[0 05 10;.9; 0;10,:0, 0;10; 06,05 6, 6, :0]1. “attentien.mask: [[1; 1; 1, 1; 1; 1; 1. .1; 6; 9, 05 .0; 6; @l; [1, .1;
1, 1; 3, 1,1, 1, 1, 1. .1, 1, 1, 11, B, 1, L, 1, 1. 1. 1,06, 9, 6, 8,6, 8, 6]1}

DATASETS

from datasets import load dataset

dataset = load dataset("yelp review full")
dataset["train"][100]

{'label': 0O,

"text': 'My expectations for McDonalds are t rarely high. But for one to still fail so spectacularly...that takes
something special!\\nThe cashier took my friends\'s order, then promptly ignored me. I had to force myself in fron
t of a cashier who opened his register to wait on the person BEHIND me. I waited over five minutes for a gigantic
order that included precisely one kid\'s meal. After watching two people who ordered after me be handed their foo
d, I asked where mine was. The manager started yelling at the cashiers for \\"serving off their orders\\" when the
y didn\'t have their food. But neither cashier was anywhere near those controls, and the manager was the one servi
ng food to customers and clearing the boards.\\nThe manager was rude when giving me my order. She didn\'t make sur
e that I had everything ON MY RECEIPT, and never even had the decency to apologize that I felt I was getting poor
service.\\nI\'ve eaten at various McDonalds restaurants for over 30 years. I\'ve worked at more than one location.
I expect bad days, bad moods, and the occasional mistake. But I have yet to have a decent experience at this stor
e. It will remain a place I avoid unless someone in my party needs to avoid illness from low blood sugar. Perhaps
I should go back to the racially biased service of Steak n Shake instead!'}

HINE-TUNING

[RAININGARGUMENTS

from transformers import TrainingArguments

training args = TrainingArguments (
output dir="checkpoints”,
learning rate=2e-5,
eval strategy="epoch",
save strategy="epoch",
logging strategy="epoch",
per device train batch size=32,
per device eval batch size=16,
num train epochs=10,
weight decay=0.01,
report to="none",

[RAINER

from transformers import Trainer

trainer = Trainer(
model=model,
args=training args,
train dataset=small train dataset,
eval dataset=small eval dataset,
compute metrics=compute metrics,

trainer.train()

PARAMETER - EFFICTENT FINE-TUNING (PEET)

LOAD MODELS, TWO OPTIONS

Option 1: load a PEFT adapter

from transformers import AutoModelForCausallLM, AutoTokenizer

peft model id = "ybelkada/opt-350m-lora”
model = AutoModelForCausallLM.from pretrained(peft model id)

Option 2: Load the model and its adapter

from transformers import AutoModelForCausallLM, AutoTokenizer

model id = "facebook/opt-350m"
peft model id = "ybelkada/opt-350m-lora"

model = AutoModelForCausallLM.from pretrained(model id)
model.load adapter(peft model id)

from transformers import AutoModelForSeq2SeqlLM

model = AutoModelForSeq2SeqLM.from pretrained("bigscience/mtO-small")

from peft import LoraConfig

peft config = LoraConfig(
lora alpha=16,
lora dropout=0.1,
r=64,
bias="none",
task type="CAUSAL LM",
)

from peft import get peft model

model = get peft model(model, peft config)
model.print trainable parameters()

trainable params: 2,752,512 || all params: 302,929,280 || trainable%: 0.9086

The rest is as before: TrainingArguments and Trainer

INFERENCE

PAGED ATTENTION

Key idea: when generating many tokens with the same prompt,
many values can be cached! The keys and queries are
augmented with new values rather than recomputed.

Doing it efficiently in a GPU-friendly way 1is non-trivial..

VLM

Faster inference: https://github.com/vllm-project/vllm

/LLM

RETRIEVAL-AUGMENTED

GENERATION (RAG)

THE IDEA

Allow the LLM to access an external source of knowledge,
later referred to as corpus.

Main application: navigate long documents (manuals,
regulations,..)

Does it reduce hallucination? Yes. Is it the solution? No!

GENERIC FRAMEWORK

We have a vectorstore, which is a database (key, value)
where:

- Keys are “embedding vectors”
- Values are “chunks”

An embedding vector is a vector of float of fixed dimension.

A chunk is a piece of text extracted from the corpus.

PREPROCESSING

This 1is the process of populating the dataset. It involves:

- Text cleaning and splitting: from a document to a set of
chunks
- Embedding: computing embeddings for each chunk

PREPROCESSING: TEXT SPLITTING

Naive: fix chunk length and split
Better:

- split on new lines
- 1include chunk overlap

PREPROCESSING: EMBEDDING

Pre-LLM:

- Word2vec: uses a simple RNN
- GloVe: Global Vectors for Word Representation

Post-LLM:

- BERT, for instance ModernBert (see MTEB for benchmarks)

https://en.wikipedia.org/wiki/Word2vec
https://nlp.stanford.edu/projects/glove/
https://en.wikipedia.org/wiki/BERT_(language_model)
https://huggingface.co/nomic-ai/modernbert-embed-base
https://huggingface.co/spaces/mteb/leaderboard

PREPROCESSING: CONTEXTUAL EMBEDDING

A simple idea by Anthropic (Claude): instead of embedding
the chunk itself, we:

- Ask an LLM to produce a description of the chunk (using
the chunk and the full document)
- Embed the description + the chunk

PROCESSING

At inference time:

- Query: from the prompt we construct queries to the
database
— Retrieve: we retrieve the most relevant chunks

- Answer: we use the added contents to formulate an answer
to the prompt

PROCESSING: QUERY

Naive: turn the prompt into a query

Better:

- Ask an LLM to formulate a query from the prompt
- HyDE: ask an LLM to generate a hypothetical document,
embed this document, and retrieve similar documents

https://arxiv.org/abs/2212.10496

PROCESSING: RETRIEVE

Naive:

— Choose a notion of similarity between embedding vectors
- Retrieve the K-nearest neighbours

Better:

- For scaling: use approximation algorithms
- For diversity: use an SVM

PROCESSING: NOTIONS OF SIMILARITY

There are many notions of similarity:

- Cosine similarity
- Dot product
- Euclidean distance

Remark: when vectors are normalized, cosine similarity
coincides with dot product

PROCESSING: ANSWER

Naive: add the most relevant chunks to the prompt

Better:

Ask an LLM, called a reranker, to filter and rearrange
the most relevant chunks

Perform a BM25 on the side, which operates on keywords,
and merge the resulting most relevant chunks

FROM UNSTRUCTURED TO STRUCTURED RAG

We only discussed the case where the corpus is unstructured.
If it is structured, there are more specific techniques..

LN PRACTICE

Two frameworks for building RAGs:

- LangChain
- Llamalndex

They do everything for you, sometimes not leaving enough
control..

https://www.langchain.com/
https://docs.llamaindex.ai/en/stable/

THE DEEPSEEK SPECTAL

& ceepseck

REFERENCES

DeepSeek papers:

- MoE: https://arxiv.org/abs/2401.06066 (early 2024)

- GRPO: https://arxiv.org/abs/2402.03300 (early 2024)

- MLA: https://arxiv.org/abs/2405.04434 (mid 2024)

- MTP: https://arxiv.org/abs/2412.19437 (end of 2024)

— DeepSeek-R1l: https://arxiv.org/abs/2501.12948 (early 2025)

Implementations:

- Open-R1l: https://github.com/huggingface/open-ril
- verl: https://github.com/volcengine/verl
- trl: https://github.com/huggingface/trl

https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://github.com/huggingface/open-r1
https://github.com/volcengine/verl
https://github.com/huggingface/trl

[WO DIRECTIONS

(1) Architecture:
- Mixture of Experts (MoE)
- Multi-head Latent Attention (MLA)
- Multi-Token Prediction (MTP)

(2) Group relative policy optimization (GRPO)

MIXTURE OF EXPERTS

THE GENERAL IDEA OF MIXTURE OF EXPERTS (MOE)

The model 1is composed of:

- A set of experts, which are independent submodels
- A router (also called gating network)

The input 1is fed to the router, which determines a weight
for each expert. The input is fed to the K experts with

highest weights. Their outputs are aggregated using these
weights.

Intuitively, each expert specialises, and the router 1is able
to predict which expert computes relevant information.

PROS AND CONS

+ Specialization: Experts can specialize 1in different aspects of the
problem, leading to better performance than a single, general-purpose
model.

+ Scalability: MoE can scale to handle very complex problems by adding more
experts.

+ Efficiency: For a given 1input, only a subset of the experts needs to be
activated, which can improve efficiency compared to a model where all
parameters are used for all inputs.

+ Improved Capacity: MoEs can have a much larger total capacity (number of
parameters) than a single model, without a proportional 1increase 1in
computational cost per example.

- Complexity: Training MoE models can be more complex than training standard
models, as the gating network and the experts need to be trained jointly.

- Data Sparsity: If the experts are too specialized, they might not receive
enough training data, leading to poor performance. This is related to the
routing decision.

- Routing Challenge: The gating network needs to learn to route 1inputs
effectively. Poor routing can lead to suboptimal performance.

MOE FOR TRANSFORMERS

- MoE layers replace MLP layers
- Each expert is an MLP
- The router is also an MLP with a softmax

Each token of the 1input is fed to the router, which
determines a weight for each expert. The token is fed to one
or two experts with highest weights. Their outputs is
aggregated using these weights.

DEEPSEEK"S MOE: FINE-GRAINED EXPERT SEGMENTATION

Issue: each token gets sent to a very small number of
experts.

Idea: keeping the number of parameters constant, we increase
the number of experts. Nothing else changes, but this way,
each token gets sent to more experts.

DEEPSEEK™S MOE: SHARED EXPERT ISOLATION

Issue: tokens assigned to different experts may require
common knowledge.

Idea: introduce shared experts that are used for each token.

(a): N experts (b): 2N experts (c): 2N routed + 1 shared

Input Hidden

(a) Conventional Top-2 Routing s (b) + Fine-grained Expert Segmentation s (c) + Shared Expert Isolation
(DeepSeekMoE)

HIDDEN UNDER THE CARPET

We need to make sure that:

- Each expert gets enough training to avoid routing

collapse
Tokens 1inside a sequence are spread to different experts

to avoid computation bottlenecks

Classical solution: auxiliary losses, which degrade
performances.

DeepSeek’s approach: adding dynamic bias for each expert

MULTI-TOKEN PREDICTION

CAN WE PREDICT MULTIPLE TOKENS AT ONCE?

Target Tokens t, ts ty ts ts t, tg te

[Cross-Entropy Loss]—' Lyain [Cross-Entropy Loss]—' i
== _‘ ________________ L BT A, S NP . — e
i Main Model : MTP Module 1
I (Next Token Prediction) . (Next? Token Prediction)

[Output Head] [Output Head]

f
\\ [Transformer Block]

]

i

Transformer Block X L]

[Linear Projection]

| concatenation

.

[RMSNorm] (RMSNorm]
4

ty ts e t7

S S U

[Cross-Entropy Loss]—' Lyitp
| MTP Module 2
1 (Next? Token Prediction)

[Output Head]

I

[Transformer Block }

i

[Linear Projection]
concatenation

| RMSNorm | [RMSNorm |
4)

l_’

[Embedd

1
|
|
|
|
1
|
|
|
1
i
|
|
1
1
|
|
|
|
1

ing Layer] [Embedding Layer }

[Embedding Layer]

MULTI-HEAD LATENT

ATTENTION

[T'S A LONG (AND STILL DEVELOPING) STORY

It starts with KV cache, which caches keys and values
when generating long sequences

But KV cache uses a lot of memory, so different methods
were proposed to reduce memory, such as Multi-Query
Attention (MQA) vs Grouped-Query Attention (GQA)
Multi-head Latent Attention (MLA) 1is another attempt to
lower memory, by projecting up and down in a latent space

SOME POINTERS

- https://huggingface.co/blog/kv-cache-quantization
- https://towardsdatascience.com/deepseek-v3-explained-1-mu
lti-head-latent-attention—-ed6bee2a67c4/

https://huggingface.co/blog/kv-cache-quantization
https://towardsdatascience.com/deepseek-v3-explained-1-multi-head-latent-attention-ed6bee2a67c4/
https://towardsdatascience.com/deepseek-v3-explained-1-multi-head-latent-attention-ed6bee2a67c4/

GROUP RELATIVE POLICY

OPTIMIZATION (GRPO)

THE THREE STAGES OF UNDERSTANDING

(1) What you tell your grandparents about Deepseek
(2) The high-level -ideas
(3) The fineprints

WHAT IS THE GOAL

Short version: post-training reasoning models

(not all models need to reason!)

Long version: we start from either a foundation model or an
instruct model, and we want to teach the model to reason to
solve maths, logic, or programming tasks.

Important: We will ask the LLM to think before giving an
answer (chain of thoughts).

rOR YOUR GRANDPARENTS

THE VERSION FOR YOUR GRANDPARENTS (1/4)

I’m teaching my 5 year old daughter additions. Here are
three approaches. In each case I give her an example (%12 +
19 = ?”) and I ask her to think and give me an answer.

- vO: I explain how I perform the addition (“12 + 19 = 31:
I first add the units, remember the carry..”)

- vl1l: I evaluate her reasoning and reward her when both are
correct.

- v2: I dignore the reasoning and reward her when the answer
is correct.

THE VERSION FOR YOUR GRANDPARENTS (2/4)

Believe it or not:

- vO 1s absolutely useless, she gets bored very quickly
with my fathersplaining

- v1 does not work so much either because she doesn’t Llike
me correcting her reasoning, it is a bit too abstract

- v2 works a lot better: the answers become more and more
correct over time, although her explanations are not very
convincing (even when the result is correct)

Somehow in v2 I rely on her to improve her reasoning, I do
not impose my way of reasoning on her

THE VERSION FOR YOUR GRANDPARENTS (3/4)

- VvO 1is called “supervised fine-tuning”
- vl 1is called “reinforcement learning with human
feedback”, because it uses an advanced reward model (me!)

- Vv2 1is a “reinforcement learning with rule-based reward
model”

The observation about my daughter’s explanations mirrors the
DeepSeek’s observations: the model needs reasoning to
improve its performance, but it becomes ununderstandable,
the model develops 1its own language

THE VERSION FOR YOUR GRANDPARENTS (4/4)

To move towards the “group relative policy optimization”
developed by DeepSeek, the analogy breaks: I can ask the
same question to an LLM and collect different answers (my

daughter refuses to do that!), because they are stochastic
mode'ls

The algorithm goes as follows: I collect 100 responses for a
fixed question, compute the average score (only based on
answer’s correctness), and then reward based on the
“advantage” of each response, which is its difference to the
average score

1IGH - LEVEL IDEAS

DIFFERENT APPROACHES FOR POST-TRAINING

- Supervised fine-tuning (SFT)

- Reinforcement Learning from Human Feedback (RLHF)
- Direct Preference Optimization (DPO)

- Group Relative Policy Optimization (GRPO)

WHAT THE DIFFERENT APPROACHES HAVE IN COMMON

Each approach defines a loss function to be minimised, which
can be more of less complex and directly related to the
objective (solving problems!).

All approaches will apply the following algorithm:

- Sample some data (more precisely, a batch of data)

- Compute the gradient of the loss with respect to the
parameters of the model

- Apply a gradient step to update the parameters

OPTION 1: SUPERVISED FINE-TUNING (SHT)

The baseline approach:

Collect data: construct a dataset of pairs (prompt,
response)

Train: classical fine-tuning, teach the model how to
respond to each prompt

[SSUES WITH SH

- Need to have a clean, large dataset

- Not well suited for reasoning: there are many ways of
getting to the right answer

- Does not take into account aligning with human
preferences

- May induce catastrophic forgetting: we can include a
penalty term in the loss for not deviating too much from
the original model

OPTION L BIS: DISTILLATION

Distillation 1is a technique for training a smaller, faster,
and more efficient model (the “student”) by transferring
knowledge from a larger, more complex model (the “teacher”)

There are (at least) two different understandings of what
this means:

- The traditional one
- The data augmentation one

OPTION 1 B1S: DATA-AUGMENTATION DISTILLATION

In “data-augmentation” distillation, the teacher 1is used to
generate the dataset (either both questions and responses,
or only responses).

This 1is particularly interesting for reasoning models,
because good reasoning is hard to come by!

OPTION 1 BIS: TRADITIONAL DISTILLATION

In “traditional” distillation, we have two targets:

— The hard target is the ground truth
- The soft target is the logits of the teacher

The student learns by minimising a loss consisting of two
terms:

- Cross-entropy loss to match the hard target
- Distillation loss to match the soft target

OPTION 2: REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHT)

Reference: https://arxiv.org/abs/1909.08593

- Collect data: construct a dataset of pairs (prompt, sets of
responses)

- Collect human data: ask humans for each prompt to rank
responses

- Train a reward model: the reward model takes as 1input a prompt
and a response, and returns a reward (numerical score)

- Train the model: fine-tune the model with an RL algorithm to
optimize rewards

https://arxiv.org/abs/1909.08593

FLASH INTRODUCTION TO REINFORCEMENT LEARNING

An agent evolves in an (unknown) environment by taking
actions through a policy. In a single step, from state s
playing action a we get reward r and go to state s’

The goal of the agent is to maximise the total reward:
m: policy

p = (8o, a9, 79, S1,a1,71,...): trajectory
Objective:

o [5

t=0

WHICH RL ALGORITHM FOR RLHT?

RLHF 1s parameterized by the RL algorithm used. Classical
choices include:

- Deep Q-Networks (DQN), the classic
- Proximal Policy Optimization (PP0O), the default option

[SSUES WITH RLKE

- Humans are expensive!

- Training a reward model is hard, unreliable, and costly
- Need to be careful about rewards

- RL ditself 1is hard

A SMALL NOTE

Here we see RLHF just as a fine-tuning algorithm. A slightly
different point of view on RLHF:

- Pre-training: teaching the LLM language (through language
modelling, meaning next token prediction)

- Fine-tuning: -instructing the LLM on downstream tasks

- Alignement: ensures that the model aligns with human
values

OPTION 3: DIRECT PREFERENCE OPTIMIZATION (DPO)

Reference: https://arxiv.org/abs/2305.18290

Key idea: get rid of the reward model

Collect data: construct a dataset of pairs (prompt, pairs
of responses), with one response preferred the other

Train: maximize the probability of generating preferred
responses

https://arxiv.org/abs/2305.18290

[SSUES WITH DPO

Requires a human to determine which of the two responses are
better

0PTION &: GROUP RELATIVE POLICY QPTIMIZATION (GRPO)

Reference: https://arxiv.org/abs/2402.03300

Key idea: Instead of trying to assign an absolute “goodness”
score to each response (like a reward model does), GRPO
focuses on relative comparisons within a group of responses.

https://arxiv.org/abs/2402.03300

0PTION &: GROUP RELATIVE POLICY QPTIMIZATION (GRPO)

Key assumption: we can evaluate the final result (but not
the reasoning!). Examples:

- maths problems: the answer 1s a number

- code problems: the answer is a piece of code, which can
be executed and tested against example 1inputs

- logical / reasoning problems: the answer is a value

In other words: rule-based reward model instead of
model-based reward model

0PTION &: GROUP RELATIVE POLICY QPTIMIZATION (GRPO)

- Collect data: construct a dataset of pairs (prompt, answer)

11 TIMPORTANT!!! It is a lot easier if you do not need to provide
the reasoning, just the answer!

- Group evaluation: given a prompt, ask the model to generate a
group of responses. Evaluate each response only based on the
answer (not the reasoning!). Averaging yields a reference
point

- Relative advantage: Compute the advantage of each response
relative to the group

- Train: update the probability of generating responses based on
their advantages

OBSERVATION ABOUT GRPO

The first experiment is to fine-tune the V3 model using
GRPO, leading to R1-Zero. The results are:

- The performances on answers are impressive

- The thinking time grows larger over the course of the
training

- The model learns reflection and develops reasoning
approaches

- BUT explanations become poor and it mixes language

[HE FINE PRINTS

OPTION 1: SUPERVISED FINE-TUNING (SH)

D: distribution of pairs (prompt, response)

mg: model with parameters 0

Loss:

E(G) — _E(.’B,y)ND

1

ly| =

ly|

Z log mo (yt | T, y<t)
t=1

OPTION 2: REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

Three steps:

- Learning a reward model
- Adding KL-constraint to the reward
- Applying an RL algorithm

STEP 1 LEARNING A REWARD MODEL

D: distribution of triples (prompt, better response, worse response)
r4: reward model with parameters ¢.

r*: latent reward model

r*(z,y) is the reward of response y to prompt x

Bradley-Terry model:

exp(r*(z,y1))
exp(r*(x,y1)) + exp(r*(z, y2))

Py >y | x) =

1

o: logistic function o(x) = R

Loss:

L(®) = —Ez,ys,50)~D (108 0(r4(z, ys) — 74 (2, Yu))]

STEP 22 ADDING A KL-CONSTRAINT T0 THE REWARD

We have learned a reward model r(x,y)

Important: r (typically) gives very sparse reward, only when
y 1s entirely generated!

To keep close to the original model, we add a “per-token KL
penalty”

STEP J: ADDING A KL-CONSTRAINT TO THE REWARD

KL = Kullback-Leibler divergence

D_KL(P || Q) measures how far 1is the model probabilistic
distribution Q far from the true distribution P

See:
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler diver

gence

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

STEP J: ADDING A KL-CONSTRAINT TO THE REWARD

D: distribution of prompts

r: learned reward model

Tref: Teference model (frozen)
my: model with parameters 6

RL loss

L) = —Epup ymrmy(z) [1(7,)]

KL-constrained loss

L(0) = —Eznp gyomo(z) [r(x,y) — BDkL(mo(y | Z) || Teet(y |)]

STEP J: ADDING A KL-CONSTRAINT TO THE REWARD

A small detail:

We use a (differentiable) estimate for the KL term:

L(6)

_E.'IIND,’yNﬂ’g (x)

r(z,y)

Y|

BZI

o Z/t | L Z/<t)

7T1ef Yt | L y<t)

STEP 3: PROKIMAL POLICY QPTIMIZATION (PPO)

First: We’ll discuss PPO for RL

Second: We’ll see what this means for LLMs

POLICY GRADIENT METHODS

PPO is a “policy gradient method”, meaning it iterates over
policies and applies gradient descent to improve policies:

mp: policy with parameters 6
p = (so0, a0, 70, S1,a1,71,...): trajectory
Loss:

t=0

[HE ADVANTAGE FUNCTION

Key quantity: the advantage function quantifies the relative
benefit of an action

m: current policy

Vr(s): expected return from s using 7

Q= (s,a): expected return from s playing @ and then using 7
Advantage function:

Ar(s,a) = Qr(s,a) — Vi(s)

COMPUTING THE GRADIENT

Lemma: 74: policy with parameters 6

p = (S0, a0, 70, S1,01,71,...): trajectory
Gradient:
o0
Vol = By Z o (s¢,a:)Vglogmg(as | s¢)
t=0

We use here the advantage because it minimises variance, but we
could use other so-called “baselines”. See here for a proof:
https://spinningup.openai.com/en/latest/spinningup/rl intro3.html

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

THE HACKY LOSS

We started from the loss defined as:

L) =-E,n, li rt]

=0
And then computed its gradient. Now, it turns out we can
define a different function, which is not at all a loss (it
can be positive or negative!), but has the right gradient:

L) =—-E un, ZA.,,O sty at)log mo(as | s¢)
t=0

ADVANTAGE ESTIMATES

Key question: how do we estimate the advantage?

Probabilistic estimates are about finding a tradeoff
between:

- Bias: how close if your estimate to the true value?
(unbiased = equal 1in expectation)
- Variance: how much your estimates depend on chance?

GENERALLZED ADVANTAGE ESTIMATION (GAE)

Idea: GAE adds a discount lambda over future steps to
balance bias (how accurate is the estimate) and variance
(how the estimates vary).

- For lambda = 0: only considers the next step (high bias,
zero variance)

- For lambda = 1: considers all future steps (no bias, high
variance)

Reference: https://arxiv.org/abs/1506.02438

https://arxiv.org/abs/1506.02438

GENERALLZED ADVANTAGE ESTIMATION (GAE)

The case lambda = 0:

Vr.~: latent value function for policy m with discount -y
V. approximate value function
0t =1 + YV (s¢1) — V(sg): TD residual of V' with discounted ~

If V =V;,, then d; is an unbiased estimate of A, -:

]Est+1~7r [5t] Est+1~7r [Tt + ’YVT(' 7(9t+1) (gt)]
IESL.*_l ~TT [Qﬂ' ’}’(gt7 a’t) Vﬂ' ")’()]
Ar

~(st,at)

GENERALLZED ADVANTAGE ESTIMATION (GAE)

General case

A € [0, 1] hyperparameter

Vi -t latent value function for policy 7 with discount ~

V. approximate value function

o0t =1t + YV (st+1) — V(s¢): TD residual of V' with discounted ~
GAE:

af}/a Z ’Y)‘ 5t+€
£=0

GENERALLZED ADVANTAGE ESTIMATION (GAE)

Long story short for GAE:

- If we have an estimate for the (discounted) value
function,
- Then we can estimate the advantage

All neat and tidy, but this means that we need a model for
estimating the value function..

VANILLA POLICY GRADIENT

At this point we have a “vanilla policy gradient” algorithm.

Key issue: after each update we need to recompute the
gradient. If we perform multiple updates, we face
performance collapse (by diverging too far from the existing
policy).

Question: can we learn more from data, making multiple
updates on the same datapoint?

SURROGATE OBJECTIVE

The surrogate objective focuses on the update

Tref: Teference policy (frozen)
my: policy with parameters 6
Loss:

mo(a | s)
Tret(@ | S)

L(0) = —E(,a)~ne - Ar,(s,a)

TRUST REGION POLLCY OPTIMLZATION (TRPOQ)

The surrogate objective was 1introduced for the TRPO
algorithm, which added a KL-divergence constraint.

The algorithm is complicated to implement..

Reference: https://arxiv.org/abs/1502.05477

https://arxiv.org/abs/1502.05477

PROXIMAL POLICY OPTIMIZATION (PPO)

The first contribution of PPO: -introducing the clipped
surrogate objective

Key idea: limit the amount the policy can change directly 1in
the objective

Reference: https://arxiv.org/abs/1707.06347

https://arxiv.org/abs/1707.06347

PROXIMAL POLICY OPTIMIZATION (PPO)

Tre: Teference policy (frozen)
mp: policy with parameters 6
Loss:

o
=

SN
Nt

1

Tret(@ |)

_E(S,a)"‘ﬂ’() [Inin < 7T9(CL I 8) ' A‘fre(sa a), g(e, Ar, (Sa a)))]

(1+¢)A if A>0,
g(e, A) = ,
(1—-¢€)A if A<O.

PROXIMAL POLICY OPTIMIZATION (PPO)

A special case to understand:

Tref: Teference policy (frozen)
mp: policy with parameters 6
If A, (s,a) is positive:

min(mo(a ‘9)), 1+e) -+ Ary(s,0)

Tret(@ | S

The loss does not grow beyond (1+¢)-A4

A<O

W w— — — — —

1—61

PROXIMAL POLICY OPTIMIZATION (PPO)

The consequence of the clipped surrogate objective is that
we can perform multiple updates using the same data points!

Even better, they can be performed in parallel.

PPO is the standard out-of-the-box SOTA algorithm for RL.

PROXIMAL POLICY OPTIMIZATION (PPO)

Note: PPO can be degenerated to a simple “optimization of

the surrogate objective” algorithm by taking at each
training step:

reference policy = frozen current policy

(It is a bit of waste but bad implementations do that..)

STEP 3: PROKIMAL POLICY QPTIMIZATION (PPO)

Now, let’s see what this means for LLMs.

The “state” 1s the context, the “action” is the next token.

D: distribution of prompts
Tref: Teference model (frozen)
mp: model with parameters 6
Loss:

ly|

[,(0) = —Exwp’ywﬂref(x) |:|;—| Zmin (W@(yt I - y<t)) ’ Aﬂ'e((x)y<t)ayt)a g(faAﬂ’e((x’y<t)’yt)))]
t=1

7Trcf(yt | Ly Y<t

0PTION &: GROUP RELATIVE POLICY QPTIMIZATION (GRPO)

Remember, somewhere in the middle of step 3 for PPO:

- “We need to estimate advantages (to compute the
gradient)”

- “GAE can do that i1f we have estimates for the value
function”

But this 1s computationally very expensive: it requires
training another model for value estimates!

Starting point of GRPO: can we get rid of the value
function?

0PTION &: GROUP RELATIVE POLICY QPTIMIZATION (GRPO)

Key idea: the value function 1is used as a “baseline”.

Here is another (unbiased!) estimate for the value function:

- Given a prompt, generate several responses

- Compute their 1individual rewards (using a rule-based
reward model)

- An estimate of the value function is the average score

0PTION &: GROUP RELATIVE POLICY QPTIMIZATION (GRPO)

D: distribution of prompts

GG: number of responses generated for a single prompt
Tref: Teference model (frozen)

mp: model with parameters 6

Loss:

G
£(¢) = —IEINDv(y’i)‘ie[l.G] Nﬂ'ref(ir) [5 ZF(T7yZ)]

where

F(z9) = L Zmin (mo (3 | m,y<t)) Ay (T, y<t) Y1), g(e,Am((:I:,yq),yt)))

v i—1 Tref (Yt | T, Y<t

0PTION &: GROUP RELATIVE POLICY QPTIMIZATION (GRPO)

The advantage is not anymore computed using GAE, it is based
on this simple computation:

r: prompt

Y1, ---,Yqg: responses

ri,...,rq: rewards according to the rule-based reward model
Advantage:

r; — mean(r)
std(r) + ¢

A((xayi,<t)ayi,t) =

0PTION &: GROUP RELATIVE POLICY QPTIMIZATION (GRPO)

Another (minor) difference with PPO:

In PPO, the KL-penalty term for not deviating was added to
the reward

In GRPO, the reward is unchanged and the KL-penalty term is
added to the loss using a different estimate:

ly|

Dxr(mo(y | z) || meet(y | 7)) =

o (Yt | T, y<t) 15 mo (Yt | T, Y<t)

— 1
7Trcf(yt | €T, y<t) 7rrcf(yt | €T, y<t)

0PTION &: GROUP RELATIVE POLICY QPTIMIZATION (GRPO)

GRPO 1is “just” a simpler way of estimating the advantage, it
is not specific to the “clipped surrogate objective” (TRPO /
PPO style), it can also be adapted to the original objective
(more like “vanilla policy gradient”). Recall the formula:

mp: policy with parameters 6
p = (so0,a0,70,S1,a1,71,...): trajectory
Gradient:

VH‘C = p~7r9 ZAvrg St, At VH 10g 7T9(at | gt)
t=0

OPTION 3: DIRECT PREFERENCE OPTIMIZATION (DPO)

Interesting exercise: understand how the loss is derived,
see https://arxiv.org/abs/2305.18290

D: distribution of triples (prompt, better response, worse response)
Tref: reference model (frozen)

mp: model with parameters 6

1

o: logistic function o(z) = ——— ey

Loss:

1 m T, 1 & moly; | T, y—
TR [logg(|—Z i 1rt) 1 8 i y<_t>>]

1 Teet (U7 | 2, y<t) |y~ | i1 Tret(Yr | T, Y<y)

https://arxiv.org/abs/2305.18290

