
Large Language Models:
Hugging Face

Nathanaël Fijalkow
CNRS, LaBRI, Bordeaux

- Models
- Pipeline and tasks
- Tokenizers
- Datasets
- Fine-tuning
- Inference

Some Hugging Face
propaganda

models

Three options

(1) Inference-as-a-service: through an API
(2) On the cloud: as managed service or custom deployment
(3) Locally: possible for small enough models (Ollama)

Hugging Face enables all three options!

https://huggingface.co/

It is a primarily a GitHub for models, but also develops a
lot of useful packages and resources!

Architectures
● CPUs: While generally slower for LLMs, they are more accessible and cost-effective for smaller models or less

demanding tasks.

● GPUs: The most common choice for LLMs, offering significant performance improvements due to their parallel

processing capabilities.

● TPUs: Google's specialized hardware designed for machine learning, providing even faster performance than

GPUs for certain models.

● Distributed Systems: Multiple processors (CPUs, GPUs, or TPUs) working together to handle large models or

high inference demands. Use accelerate: https://huggingface.co/docs/accelerate/index

● Edge Devices: Smaller, less powerful devices like smartphones and IoT devices can run optimized LLMs for

specific tasks.

https://huggingface.co/docs/accelerate/index

How to get GPU resources for free ?
Anyone: Google colab, Kaggle, Codesphere, Sagemaker…

Academics:

- grid5000 https://www.grid5000.fr/
- Jean-Zay https://www.edari.fr/

https://www.grid5000.fr/w/Grid5000:Home
https://www.edari.fr/

How much memory for a 3B model?
The memory required to hold a 3B parameter LLM in memory depends heavily on the data type used to store the model

weights:

Full Precision (FP32):

● Each parameter requires 32 bits (4 bytes)

● Total memory: 3 billion parameters * 4 bytes/parameter = 12 GB

Heavily Quantized (INT4):

● Each parameter requires 4 bits (0.5 bytes)

● Total memory: 3 billion parameters * 0.5 bytes/parameter = 1.5 GB

This is only for holding the model in memory! You should aim at 4x this for inference and fine-tuning.

Pipeline and tasks

Tasks
1. Text Classification

- Sentiment analysis: Determining the emotional tone of a text (positive, negative,
neutral).

- Topic classification: Categorizing text into predefined topics.
- Spam detection: Identifying unsolicited or unwanted messages.
- Natural language inference: Determining the relationship between two sentences

(entailment, contradiction, neutral).

2. Token Classification

- Named entity recognition (NER): Identifying and classifying named entities in text
(people, organizations, locations, etc.).

- Part-of-speech (POS) tagging: Assigning grammatical tags to words (noun, verb,
adjective, etc.).

3. Question Answering

- Extractive question answering: Finding the answer to a question within a given
text.

- Multiple choice question answering: Selecting the best answer from a set of
options.

More tasks
4. Text Generation

- Text summarization: Generating a concise summary of a longer text.
- Translation: Translating text from one language to another.
- Dialogue generation: Creating conversational responses in a chatbot.
- Code generation: Generating code in various programming languages.

5. Text2Text Generation

- Paraphrasing: Rewriting a text while preserving its meaning.
- Summarization: Generating a concise summary of a longer text.
- Translation: Translating text from one language to another.

6. Fill-Mask

- Masked language modeling: Predicting missing words in a text.

7. Feature Extraction

- Generating embeddings: Creating numerical representations of text for use
in other machine learning tasks.

Pipeline: concise but little control

You can choose the device (CPU, GPU)

WTF?

Hugging Face: “Don’t worry, this is completely normal! The pretrained head of the BERT model is discarded, and
replaced with a randomly initialized classification head. You will fine-tune this new model head on your sequence
classification task, transferring the knowledge of the pretrained model to it.”

Serverless inference API: slow but free

Pipeline is good to get started
But soon you feel limited.

Let’s see how to get a bit more control!

Tokenizers

The tokenizer is for dealing with texts. For other formats:

- Speech and audio, use a Feature extractor to extract
sequential features from audio waveforms and convert them
into tensors.

- Image inputs use a ImageProcessor to convert images into
tensors.

- Multimodal inputs, use a Processor to combine a tokenizer
and a feature extractor or image processor.

Only dealing with text here…

The nasty business of data preprocessing
You want to create batches (a lot more efficient!). This
means that you may need to:

- Pad: add a special token [PAD] to make sure all inputs
have the same size

- Truncate: if some inputs are larger than the context
length of your model, you need to break them up into more
inputs (but it’s not that simple: better introduce some
overlapping!)

Good news: Tokenizer does that for you!

Datasets

Fine-tuning

TrainingArguments

Trainer

Parameter-Efficient Fine-tuning (PEFT)

Load models, two options

The rest is as before: TrainingArguments and Trainer

Inference

Paged attention
Key idea: when generating many tokens with the same prompt,
many values can be cached! The keys and queries are
augmented with new values rather than recomputed.

Doing it efficiently in a GPU-friendly way is non-trivial…

VLLM
Faster inference: https://github.com/vllm-project/vllm

Retrieval-augmented
Generation (RAG)

The idea
Allow the LLM to access an external source of knowledge,
later referred to as corpus.

Main application: navigate long documents (manuals,
regulations,…)

Does it reduce hallucination? Yes. Is it the solution? No!

Generic framework
We have a vectorstore, which is a database (key, value)
where:

- Keys are “embedding vectors”
- Values are “chunks”

An embedding vector is a vector of float of fixed dimension.

A chunk is a piece of text extracted from the corpus.

Preprocessing

This is the process of populating the dataset. It involves:

- Text cleaning and splitting: from a document to a set of
chunks

- Embedding: computing embeddings for each chunk

Preprocessing: text splitting

Naive: fix chunk length and split

Better:

- split on new lines
- include chunk overlap

Preprocessing: embedding

Pre-LLM:

- Word2vec: uses a simple RNN
- GloVe: Global Vectors for Word Representation

Post-LLM:

- BERT, for instance ModernBert (see MTEB for benchmarks)

https://en.wikipedia.org/wiki/Word2vec
https://nlp.stanford.edu/projects/glove/
https://en.wikipedia.org/wiki/BERT_(language_model)
https://huggingface.co/nomic-ai/modernbert-embed-base
https://huggingface.co/spaces/mteb/leaderboard

Preprocessing: contextual embedding
A simple idea by Anthropic (Claude): instead of embedding
the chunk itself, we:

- Ask an LLM to produce a description of the chunk (using
the chunk and the full document)

- Embed the description + the chunk

Processing
At inference time:

- Query: from the prompt we construct queries to the
database

- Retrieve: we retrieve the most relevant chunks
- Answer: we use the added contents to formulate an answer

to the prompt

Processing: Query
Naive: turn the prompt into a query

Better:

- Ask an LLM to formulate a query from the prompt
- HyDE: ask an LLM to generate a hypothetical document,

embed this document, and retrieve similar documents

https://arxiv.org/abs/2212.10496

Processing: Retrieve
Naive:

- Choose a notion of similarity between embedding vectors
- Retrieve the K-nearest neighbours

Better:

- For scaling: use approximation algorithms
- For diversity: use an SVM

Processing: notions of similarity
There are many notions of similarity:

- Cosine similarity
- Dot product
- Euclidean distance

Remark: when vectors are normalized, cosine similarity
coincides with dot product

Processing: Answer
Naive: add the most relevant chunks to the prompt

Better:

- Ask an LLM, called a reranker, to filter and rearrange
the most relevant chunks

- Perform a BM25 on the side, which operates on keywords,
and merge the resulting most relevant chunks

From unstructured to structured RAG
We only discussed the case where the corpus is unstructured.
If it is structured, there are more specific techniques…

In practice
Two frameworks for building RAGs:

- LangChain
- LlamaIndex

They do everything for you, sometimes not leaving enough
control…

https://www.langchain.com/
https://docs.llamaindex.ai/en/stable/

The DeepSeek special

References
DeepSeek papers:

- MoE: https://arxiv.org/abs/2401.06066 (early 2024)
- GRPO: https://arxiv.org/abs/2402.03300 (early 2024)
- MLA: https://arxiv.org/abs/2405.04434 (mid 2024)
- MTP: https://arxiv.org/abs/2412.19437 (end of 2024)
- DeepSeek-R1: https://arxiv.org/abs/2501.12948 (early 2025)

Implementations:

- Open-R1: https://github.com/huggingface/open-r1
- verl: https://github.com/volcengine/verl
- trl: https://github.com/huggingface/trl

https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2501.12948
https://github.com/huggingface/open-r1
https://github.com/volcengine/verl
https://github.com/huggingface/trl

Two directions
(1) Architecture:

- Mixture of Experts (MoE)

- Multi-head Latent Attention (MLA)

- Multi-Token Prediction (MTP)

(2) Group relative policy optimization (GRPO)

 Mixture of experts

The general idea of mixture of experts (MoE)
The model is composed of:

- A set of experts, which are independent submodels
- A router (also called gating network)

The input is fed to the router, which determines a weight
for each expert. The input is fed to the K experts with
highest weights. Their outputs are aggregated using these
weights.

Intuitively, each expert specialises, and the router is able
to predict which expert computes relevant information.

Pros and cons
+ Specialization: Experts can specialize in different aspects of the

problem, leading to better performance than a single, general-purpose
model.

+ Scalability: MoE can scale to handle very complex problems by adding more
experts.

+ Efficiency: For a given input, only a subset of the experts needs to be
activated, which can improve efficiency compared to a model where all
parameters are used for all inputs.

+ Improved Capacity: MoEs can have a much larger total capacity (number of
parameters) than a single model, without a proportional increase in
computational cost per example.

- Complexity: Training MoE models can be more complex than training standard
models, as the gating network and the experts need to be trained jointly.

- Data Sparsity: If the experts are too specialized, they might not receive
enough training data, leading to poor performance. This is related to the
routing decision.

- Routing Challenge: The gating network needs to learn to route inputs
effectively. Poor routing can lead to suboptimal performance.

MoE for transformers
- MoE layers replace MLP layers
- Each expert is an MLP
- The router is also an MLP with a softmax

Each token of the input is fed to the router, which
determines a weight for each expert. The token is fed to one
or two experts with highest weights. Their outputs is
aggregated using these weights.

Deepseek’s MoE: fine-grained expert segmentation
Issue: each token gets sent to a very small number of
experts.

Idea: keeping the number of parameters constant, we increase
the number of experts. Nothing else changes, but this way,
each token gets sent to more experts.

Deepseek’s MoE: shared expert isolation
Issue: tokens assigned to different experts may require
common knowledge.

Idea: introduce shared experts that are used for each token.

(a): N experts (b): 2N experts (c): 2N routed + 1 shared

Hidden under the carpet
We need to make sure that:

- Each expert gets enough training to avoid routing
collapse

- Tokens inside a sequence are spread to different experts
to avoid computation bottlenecks

Classical solution: auxiliary losses, which degrade
performances.

DeepSeek’s approach: adding dynamic bias for each expert

 Multi-token prediction

Can we predict multiple tokens at once?

Multi-head Latent
attention

It’s a long (and still developing) story

- It starts with KV cache, which caches keys and values
when generating long sequences

- But KV cache uses a lot of memory, so different methods
were proposed to reduce memory, such as Multi-Query
Attention (MQA) vs Grouped-Query Attention (GQA)

- Multi-head Latent Attention (MLA) is another attempt to
lower memory, by projecting up and down in a latent space

Some pointers

- https://huggingface.co/blog/kv-cache-quantization
- https://towardsdatascience.com/deepseek-v3-explained-1-mu

lti-head-latent-attention-ed6bee2a67c4/

https://huggingface.co/blog/kv-cache-quantization
https://towardsdatascience.com/deepseek-v3-explained-1-multi-head-latent-attention-ed6bee2a67c4/
https://towardsdatascience.com/deepseek-v3-explained-1-multi-head-latent-attention-ed6bee2a67c4/

Group relative Policy
optimization (GRPO)

The three stages of understanding
(1) What you tell your grandparents about Deepseek
(2) The high-level ideas
(3) The fineprints

What is the goal?
Short version: post-training reasoning models

(not all models need to reason!)

Long version: we start from either a foundation model or an
instruct model, and we want to teach the model to reason to
solve maths, logic, or programming tasks.

Important: We will ask the LLM to think before giving an
answer (chain of thoughts).

For your grandparents

The version for your grandparents (1/4)
I’m teaching my 5 year old daughter additions. Here are
three approaches. In each case I give her an example (“12 +
19 = ?”) and I ask her to think and give me an answer.

- v0: I explain how I perform the addition (“12 + 19 = 31:
I first add the units, remember the carry…”)

- v1: I evaluate her reasoning and reward her when both are
correct.

- v2: I ignore the reasoning and reward her when the answer
is correct.

The version for your grandparents (2/4)
Believe it or not:

- v0 is absolutely useless, she gets bored very quickly
with my fathersplaining

- v1 does not work so much either because she doesn’t like
me correcting her reasoning, it is a bit too abstract

- v2 works a lot better: the answers become more and more
correct over time, although her explanations are not very
convincing (even when the result is correct)

Somehow in v2 I rely on her to improve her reasoning, I do
not impose my way of reasoning on her

The version for your grandparents (3/4)
- v0 is called “supervised fine-tuning”
- v1 is called “reinforcement learning with human

feedback”, because it uses an advanced reward model (me!)
- v2 is a “reinforcement learning with rule-based reward

model”

The observation about my daughter’s explanations mirrors the
DeepSeek’s observations: the model needs reasoning to
improve its performance, but it becomes ununderstandable,
the model develops its own language

The version for your grandparents (4/4)
To move towards the “group relative policy optimization”
developed by DeepSeek, the analogy breaks: I can ask the
same question to an LLM and collect different answers (my
daughter refuses to do that!), because they are stochastic
models

The algorithm goes as follows: I collect 100 responses for a
fixed question, compute the average score (only based on
answer’s correctness), and then reward based on the
“advantage” of each response, which is its difference to the
average score

High-level ideas

Different approaches for post-training
- Supervised fine-tuning (SFT)
- Reinforcement Learning from Human Feedback (RLHF)
- Direct Preference Optimization (DPO)
- Group Relative Policy Optimization (GRPO)

What the different approaches have in common
Each approach defines a loss function to be minimised, which
can be more of less complex and directly related to the
objective (solving problems!).

All approaches will apply the following algorithm:

- Sample some data (more precisely, a batch of data)
- Compute the gradient of the loss with respect to the

parameters of the model
- Apply a gradient step to update the parameters

Option 1: Supervised fine-tuning (SFT)
The baseline approach:

- Collect data: construct a dataset of pairs (prompt,
response)

- Train: classical fine-tuning, teach the model how to
respond to each prompt

Issues with SFT

- Need to have a clean, large dataset
- Not well suited for reasoning: there are many ways of

getting to the right answer
- Does not take into account aligning with human

preferences
- May induce catastrophic forgetting: we can include a

penalty term in the loss for not deviating too much from
the original model

Option 1 bis: distillation
Distillation is a technique for training a smaller, faster,
and more efficient model (the “student”) by transferring
knowledge from a larger, more complex model (the “teacher”)

There are (at least) two different understandings of what
this means:

- The traditional one
- The data augmentation one

Option 1 bis: data-augmentation distillation
In “data-augmentation” distillation, the teacher is used to
generate the dataset (either both questions and responses,
or only responses).

This is particularly interesting for reasoning models,
because good reasoning is hard to come by!

Option 1 bis: traditional distillation
In “traditional” distillation, we have two targets:

- The hard target is the ground truth
- The soft target is the logits of the teacher

The student learns by minimising a loss consisting of two
terms:

- Cross-entropy loss to match the hard target
- Distillation loss to match the soft target

Option 2: Reinforcement Learning from Human Feedback (RLHF)
Reference: https://arxiv.org/abs/1909.08593

- Collect data: construct a dataset of pairs (prompt, sets of
responses)

- Collect human data: ask humans for each prompt to rank
responses

- Train a reward model: the reward model takes as input a prompt
and a response, and returns a reward (numerical score)

- Train the model: fine-tune the model with an RL algorithm to
optimize rewards

https://arxiv.org/abs/1909.08593

Flash introduction to Reinforcement Learning
An agent evolves in an (unknown) environment by taking
actions through a policy. In a single step, from state s
playing action a we get reward r and go to state s’

The goal of the agent is to maximise the total reward:

Which RL algorithm for RLHF?
RLHF is parameterized by the RL algorithm used. Classical
choices include:

- Deep Q-Networks (DQN), the classic
- Proximal Policy Optimization (PPO), the default option

Issues with RLHF

- Humans are expensive!
- Training a reward model is hard, unreliable, and costly
- Need to be careful about rewards
- RL itself is hard

A small note
Here we see RLHF just as a fine-tuning algorithm. A slightly
different point of view on RLHF:

- Pre-training: teaching the LLM language (through language
modelling, meaning next token prediction)

- Fine-tuning: instructing the LLM on downstream tasks
- Alignement: ensures that the model aligns with human

values

Option 3: Direct preference optimization (DPO)
Reference: https://arxiv.org/abs/2305.18290

Key idea: get rid of the reward model

- Collect data: construct a dataset of pairs (prompt, pairs
of responses), with one response preferred the other

- Train: maximize the probability of generating preferred
responses

https://arxiv.org/abs/2305.18290

Issues with DPO

Requires a human to determine which of the two responses are
better

Option 4: Group Relative Policy Optimization (GRPO)
Reference: https://arxiv.org/abs/2402.03300

Key idea: Instead of trying to assign an absolute “goodness”
score to each response (like a reward model does), GRPO
focuses on relative comparisons within a group of responses.

https://arxiv.org/abs/2402.03300

Option 4: Group Relative Policy Optimization (GRPO)
Key assumption: we can evaluate the final result (but not
the reasoning!). Examples:

- maths problems: the answer is a number
- code problems: the answer is a piece of code, which can

be executed and tested against example inputs
- logical / reasoning problems: the answer is a value

In other words: rule-based reward model instead of
model-based reward model

Option 4: Group Relative Policy Optimization (GRPO)
- Collect data: construct a dataset of pairs (prompt, answer)

!!!IMPORTANT!!! It is a lot easier if you do not need to provide
the reasoning, just the answer!

- Group evaluation: given a prompt, ask the model to generate a
group of responses. Evaluate each response only based on the
answer (not the reasoning!). Averaging yields a reference
point

- Relative advantage: Compute the advantage of each response
relative to the group

- Train: update the probability of generating responses based on
their advantages

Observation about GRPO
The first experiment is to fine-tune the V3 model using
GRPO, leading to R1-Zero. The results are:

- The performances on answers are impressive
- The thinking time grows larger over the course of the

training
- The model learns reflection and develops reasoning

approaches
- BUT explanations become poor and it mixes language

The fine prints

Option 1: Supervised fine-tuning (SFT)

Option 2: Reinforcement Learning from Human Feedback (RLHF)
Three steps:

- Learning a reward model
- Adding KL-constraint to the reward
- Applying an RL algorithm

Step 1: Learning a reward model

Step 2: Adding a KL-constraint to the reward
We have learned a reward model r(x,y)

Important: r (typically) gives very sparse reward, only when
y is entirely generated!

To keep close to the original model, we add a “per-token KL
penalty”

Step 2: Adding a KL-constraint to the reward
KL = Kullback–Leibler divergence

D_KL(P || Q) measures how far is the model probabilistic
distribution Q far from the true distribution P

See:
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_diver
gence

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

Step 2: Adding a KL-constraint to the reward

Step 2: Adding a KL-constraint to the reward
A small detail:

Step 3: Proximal Policy Optimization (PPO)

First: We’ll discuss PPO for RL

Second: We’ll see what this means for LLMs

Policy gradient methods
PPO is a “policy gradient method”, meaning it iterates over
policies and applies gradient descent to improve policies:

The advantage function
Key quantity: the advantage function quantifies the relative
benefit of an action

Computing the gradient
Lemma:

We use here the advantage because it minimises variance, but we
could use other so-called “baselines”. See here for a proof:
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

The hacky loss
We started from the loss defined as:

And then computed its gradient. Now, it turns out we can
define a different function, which is not at all a loss (it
can be positive or negative!), but has the right gradient:

Advantage estimates
Key question: how do we estimate the advantage?

Probabilistic estimates are about finding a tradeoff
between:

- Bias: how close if your estimate to the true value?
(unbiased = equal in expectation)

- Variance: how much your estimates depend on chance?

Generalized Advantage Estimation (GAE)
Idea: GAE adds a discount lambda over future steps to
balance bias (how accurate is the estimate) and variance
(how the estimates vary).

- For lambda = 0: only considers the next step (high bias,
zero variance)

- For lambda = 1: considers all future steps (no bias, high
variance)

Reference: https://arxiv.org/abs/1506.02438

https://arxiv.org/abs/1506.02438

Generalized Advantage Estimation (GAE)
The case lambda = 0:

Generalized Advantage Estimation (GAE)
General case

Generalized Advantage Estimation (GAE)
Long story short for GAE:

- If we have an estimate for the (discounted) value
function,

- Then we can estimate the advantage

All neat and tidy, but this means that we need a model for
estimating the value function…

Vanilla policy gradient
At this point we have a “vanilla policy gradient” algorithm.

Key issue: after each update we need to recompute the
gradient. If we perform multiple updates, we face
performance collapse (by diverging too far from the existing
policy).

Question: can we learn more from data, making multiple
updates on the same datapoint?

Surrogate objective
The surrogate objective focuses on the update

Trust region policy optimization (TRPO)
The surrogate objective was introduced for the TRPO
algorithm, which added a KL-divergence constraint.

The algorithm is complicated to implement…

Reference: https://arxiv.org/abs/1502.05477

https://arxiv.org/abs/1502.05477

Proximal Policy Optimization (PPO)
The first contribution of PPO: introducing the clipped
surrogate objective

Key idea: limit the amount the policy can change directly in
the objective

Reference: https://arxiv.org/abs/1707.06347

https://arxiv.org/abs/1707.06347

Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO)
A special case to understand:

The loss does not grow beyond

Proximal Policy Optimization (PPO)
The consequence of the clipped surrogate objective is that
we can perform multiple updates using the same data points!

Even better, they can be performed in parallel.

PPO is the standard out-of-the-box SOTA algorithm for RL.

Proximal Policy Optimization (PPO)
Note: PPO can be degenerated to a simple “optimization of
the surrogate objective” algorithm by taking at each
training step:

reference policy = frozen current policy

(It is a bit of waste but bad implementations do that…)

Step 3: Proximal Policy Optimization (PPO)
Now, let’s see what this means for LLMs.

The “state” is the context, the “action” is the next token.

Option 4: Group Relative Policy Optimization (GRPO)
Remember, somewhere in the middle of step 3 for PPO:

- “We need to estimate advantages (to compute the
gradient)”

- “GAE can do that if we have estimates for the value
function”

But this is computationally very expensive: it requires
training another model for value estimates!

Starting point of GRPO: can we get rid of the value
function?

Option 4: Group Relative Policy Optimization (GRPO)
Key idea: the value function is used as a “baseline”.

Here is another (unbiased!) estimate for the value function:

- Given a prompt, generate several responses
- Compute their individual rewards (using a rule-based

reward model)
- An estimate of the value function is the average score

Option 4: Group Relative Policy Optimization (GRPO)

Option 4: Group Relative Policy Optimization (GRPO)
The advantage is not anymore computed using GAE, it is based
on this simple computation:

Option 4: Group Relative Policy Optimization (GRPO)
Another (minor) difference with PPO:

In PPO, the KL-penalty term for not deviating was added to
the reward

In GRPO, the reward is unchanged and the KL-penalty term is
added to the loss using a different estimate:

Option 4: Group Relative Policy Optimization (GRPO)
GRPO is “just” a simpler way of estimating the advantage, it
is not specific to the “clipped surrogate objective” (TRPO /
PPO style), it can also be adapted to the original objective
(more like “vanilla policy gradient”). Recall the formula:

Option 3: Direct preference optimization (DPO)
Interesting exercise: understand how the loss is derived,
see https://arxiv.org/abs/2305.18290

https://arxiv.org/abs/2305.18290

