Large Language Models: Fine-tuning

Nathanaël Fijalkow CNRS, LaBRI, Bordeaux

FINE-TUNING

- General overview

– LoRA

FOUNDATION MODELS

Language Models are not very useful, they randomly generate texts... But this means that they somehow capture some information from natural language! They are also called foundation models.

Fine-tuning is about making Language Models solve concrete tasks, like classification, question answering, name entity recognition...

We often cannot afford updating the *whole* model!

Most of us will not train foundation models… Rather fine-tune existing ones.

LOW-RANK ADAPTATION (LORA)

Two key ideas:

(1) We only store the changes, not a new model(2) We only update a small number of parameters

IDEA: STORING WEIGHT UPDATES

Say we consider a linear layer with matrix W. We keep the matrix W fixed and store ΔW

Weight update in regular finetuning

RANK APPROXIMATIONS

A matrix W of dimension dxd contains dxd parameters. It can be *rank-r approximated* by two matrices AxB with:

- A of dimension dxr
- B of dimension rxd

Instead of dxd parameters we now have 2xdxr parameters.

WEIGHT UPDATE

LORA LAYER

```
import math
class LoRALayer(torch.nn.Module):
    def __init__(self, in_dim, out_dim, rank, alpha):
        super().__init__()
        std_dev = 1 / torch.sqrt(torch.tensor(rank).float())
        self.A = nn.Parameter(torch.randn(in_dim, rank) * std_dev)
        self.B = nn.Parameter(torch.zeros(rank, out_dim))
        self.alpha = alpha

def forward(self, x):
        x = self.alpha * (x @ self.A @ self.B)
        return x
```

ADDING THE LORA LAYER

```
class LinearWithLoRA(torch.nn.Module):
    def __init__(self, linear, rank, alpha):
        super().__init__()
        self.linear = linear
        self.lora = LoRALayer(
            linear.in_features, linear.out_features, rank, alpha
        )
    def forward(self, x):
        return self.linear(x) + self.lora(x)
```

```
def replace_linear_with_lora(model, rank, alpha):
    for name, module in model.named_children():
        if isinstance(module, torch.nn.Linear):
            # Replace the Linear layer with LinearWithLoRA
            setattr(model, name, LinearWithLoRA(module, rank, alpha))
        else:
            # Recursively apply the same function to child modules
            replace linear with lora(module, rank, alpha)
```

- We then freeze the original model parameter and use the replace linear with lora to replace the said Linear layers using the code below
- This will replace the Linear layers in the LLM with LinearWithLoRA layers

```
total params = sum(p.numel() for p in model.parameters() if p.requires grad)
print(f"Total trainable parameters before: {total params:,}")
for param in model.parameters():
    param.requires grad = False
total params = sum(p.numel() for p in model.parameters() if p.requires grad)
print(f"Total trainable parameters after: {total params:,}")
Total trainable parameters before: 124,441,346
Total trainable parameters after: 0
replace linear with lora(model, rank=16, alpha=16)
total params = sum(p.numel() for p in model.parameters() if p.requires grad)
print(f"Total trainable LoRA parameters: {total params:,}")
```

Total trainable LoRA parameters: 2,666,528

```
GPTModel(
  (tok emb): Embedding(50257, 768)
  (pos emb): Embedding(1024, 768)
  (drop emb): Dropout(p=0.0, inplace=False)
  (trf blocks): Sequential(
    (0): TransformerBlock(
      (att): MultiHeadAttention(
        (W query): LinearWithLoRA(
          (linear): Linear(in features=768, out features=768, bias=True)
          (lora): LoRALayer()
        (W key): LinearWithLoRA(
          (linear): Linear(in features=768, out features=768, bias=True)
          (lora): LoRALayer()
        (W value): LinearWithLoRA(
          (linear): Linear(in features=768, out features=768, bias=True)
          (lora): LoRALayer()
```

print(model)